
MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler & Dhairya Malhotra (NYU Courant)

Spring 2019: Advanced Topics in Numerical Analysis:
High Performance Computing

Assignment 1 (due Feb. 11, 2019)

1. Describe a parallel application and the algorithms used. Find and examine an application
problem for which high-performance computing has been used. Pick a problem from your own
research, or find a problem elsewhere. Prepare a 1–2 page description of the problem and describe
where and how successful high-performance computing has been/is used. Consider to include the
following:

(a) What’s the application problem being solved?

(b) Why does the problem require large/fast computation?

(c) What are the underlying algorithms?

(d) If the application uses a supercomputer, where is that computer on the Top500 list (http:
//www.top500.org/)? Say a few words about the kind of architecture.

(e) How well does the algorithm perform? Does it “scale”?

If you are looking for an application, take a look at the papers from one of the previous Supercom-
puting conferences.1 Alternatively, take a look at the National Science Foundation (NSF)-funded
supercomputing centers. These centers provide computing resources for open research under the
Extreme Science and Engineering Discovery Environment (XSEDE)2 and the website usually has
science stories with links to papers. Here are some direct links to US-based computing cen-
ters.34567 Please hand in this description as a separate PDF file. I will make all these descriptions
available to give us an overview of research topics that require HPC resources.

2. Matrix-matrix multiplication. We will experiment with a simple implementation of a matrix-
matrix multiplication, which you can download from the homework1 directory in https://

github.com/NYU-HPC19/. We will improve and extend this implementation throughout the
semester. For now, let us just assess the performance of this basic function. Report the processor
you use for your timings. For code compiled with different optimization flags (-O0 and -O3) and
for various (large) matrix sizes, report

• the flop rate,

• and the rate of memory access.

3. Write a program to solve the Laplace equation in one space dimension. For a given function
f : [0, 1]→ R, we attempt to solve the linear differential equation

− u′′ = f in (0, 1), and u(0) = 0, u(1) = 0 (1)

1http://supercomputing.org/history.php and choose “Conference Proceedings”.
2XSEDE: https://www.xsede.org/
3Oark Ridge National Laboratory: https://www.olcf.ornl.gov/
4National Energy Research Scientific Computing Center (NERSC): https://www.nersc.gov/
5San Diego Supercomputing Center: http://www.sdsc.edu/
6Nasa Advanced Supercomputing Division: http://www.nas.nasa.gov/
7Texas Advanced Computing Center (TACC): https://www.tacc.utexas.edu/

1

http://www.top500.org/
http://www.top500.org/
https://github.com/NYU-HPC19/
https://github.com/NYU-HPC19/
http://supercomputing.org/history.php
https://www.xsede.org/
https://www.olcf.ornl.gov/
https://www.nersc.gov/
http://www.sdsc.edu/
http://www.nas.nasa.gov/
https://www.tacc.utexas.edu/


for a function u. In one space dimension8, this so-called boundary value problem can be solved
analytically by integrating f twice. In higher dimensions, the analogous problem usually cannot be
solved analytically and one must rely on numerical approximations for u. We use a finite number
of grid points in [0, 1] and finite-difference approximations for the second derivative to approximate
the solution to (1). We choose the uniformly spaced points {xi = ih : i = 0, 1, . . . , N,N + 1} ⊂
[0, 1], with h = 1/(N + 1), and approximate u(xi) ≈ ui and f(xi) ≈ fi, for i = 0, . . . , N + 1.
Using Taylor expansions of u(xi − h) and u(xi + h) about u(xi) results in

−u′′(xi) =
−u(xi − h) + 2u(xi)− u(xi + h)

h2
+ h.o.t.,

where h.o.t. stands for a remainder term that is of higher order in h, i.e., becomes small as h
becomes small. We now approximate the second derivative at the point xi as follows:

−u′′(xi) ≈
−ui−1 + 2ui − ui+1

h2
.

This results in the following finite-dimensional approximation of (1):

Au = f , (2)

where

A =
1

h2



2 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 2


, u =


u1
u2
...

uN−1
uN

, f =


f1
f2
...

fN−1
fN

.

Simple methods to solve (2) are the Jacobi and the Gauss-Seidel method, which start from an initial
vector u0 ∈ RN and compute approximate solution vectors uk, k = 1, 2, . . .. The component-wise
formula for the Jacobi method is

uk+1
i =

1

aii

fi −
∑
j 6=i

aiju
k
j

 ,

where aij are the entries of the matrix A. The Gauss-Seidel algorithm is given by

uk+1
i =

1

aii

fi −
∑
j<i

aiju
k+1
j −

∑
j>i

aiju
k
j

 .

If you are unfamiliar with these methods, please take a look at the Wikipedia entries for the
Jacobi9 and the Gauss-Seidel10 methods.

8The generalization of (1) to two and three-dimensional domains Ω instead of the one-dimensional interval Ω = [0, 1]
is the Laplace equation,

−∆u = f on Ω,

u = 0 on ∂Ω,

which is one of the most important partial differential equations in mathematical physics.
9http://en.wikipedia.org/wiki/Jacobi_method

10http://en.wikipedia.org/wiki/Gauss-Seidel_method

2

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Gauss-Seidel_method


(a) Write a program in C that uses the Jacobi or the Gauss-Seidel method to solve (2), where
the number of discretization points N is an input parameter, and f(x) ≡ 1, i.e., the right
hand side vector f is a vector of all ones.

(b) After each iteration, output the norm of the residual ‖Auk−f‖ on a new line, and terminate
the iteration when the initial residual is decreased by a factor of 106 or after 5000 iterations.
Start the iteration with a zero initialization vector, i.e., u0 is the zero vector.

(c) Compare the number of iterations needed for the two different methods for different numbers
N = 100 and N = 10, 000. Compare the run times for N = 10, 000 for 100 iterations using
different compiler optimization flags (-O0 and -O3). Report the results and a listing of your
program. Specify which computer architecture you used for your runs. Make sure you free
all the allocated memory before you exit.

3


