
MATH-GA 2012.001 and CSCI-GA 2945.001, Georg Stadler & Dhairya Malhotra (NYU Courant)

Spring 2019: Advanced Topics in Numerical Analysis:
High Performance Computing

Assignment 3 (due Apr. 1, 2019)

Handing in your homework: Hand in your homework as for the previous homework assignment
(git repo with Makefile), answering the questions by adding a text or a LATEX file into your repo.
The git repository https://github.com/NYU-HPC19/homework3.git contains the code you
can build on for this homework.

1. Approximating Special Functions Using Taylor Series & Vectorization. Special
functions like trigonometric functions can be expensive to evaluate on current processor
architectures which are optimized for floating-point multiplications and additions. In this
assignment, we will try to optimize evaluation of sin(x) for x ∈ [−π/4, π/4] by replacing
the builtin scalar function in C/C++ with a vectorized Taylor series approximation,

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · ·

The source file fast-sin.cpp in the homework repository contains the following functions
to evaluate {sin(x0), sin(x1), sin(x2), sin(x3)} for different x0, . . . , x3:

• sin4 reference(): is implemented using the builtin C/C++ function.

• sin4 taylor(): evaluates a truncated Taylor series expansion accurate to about
12-digits.

• sin4 intrin(): evaluates only the first two terms in the Taylor series expansion
(3-digit accuracy) and is vectorized using SSE and AVX intrinsics.

• sin4 vec(): evaluates only the first two terms in the Taylor series expansion (3-digit
accuracy) and is vectorized using the Vec class.

Your task is to improve the accuracy to 12-digits for any one vectorized version by adding
more terms to the Taylor series expansion. Depending on the instruction set supported
by the processor you are using, you can choose to do this for either the SSE part of
the function sin4 intrin() or the AVX part of the function sin4 intrin() or for the
function sin4 vec().

Extra credit: develop an efficient way to evaluate the function outside of the interval
x ∈ [−π/4, π/4] using symmetries. Explain your idea in words and implement it for the
function sin4 taylor() and for any one vectorized version. Hint: eiθ = cos θ + i sin θ
and ei(θ+π/2) = ieiθ.

2. Parallel Scan in OpenMP. This is an example where the shared memory parallel version of
an algorithm requires some thinking beyond parallelizing for-loops. We aim at parallelizing
a scan-operation with OpenMP (a serial version is provided in the homework repo). Given

1

https://github.com/NYU-HPC19/homework3.git


a (long) vector/array v ∈ Rn, a scan outputs another vector/array w ∈ Rn of the same
size with entries

wk =
k∑
i=1

vi for k = 1, . . . , n.

To parallelize the scan operation with OpenMP using p threads, we split the vector into p
parts [vk(j), vk(j+1)−1], j = 1, . . . , p, where k(1) = 1 and k(p+1) = n+1 of (approximately)
equal length. Now, each thread computes the scan locally and in parallel, neglecting the
contributions from the other threads. Every but the first local scan thus computes results
that are off by a constant, namely the sums obtains by all the threads with lower number.
For instance, all the results obtained by the the r-th thread are off by

k(r)−1∑
i=1

vi = s1 + · · ·+ sr−1

which can easily be computed as the sum of the partial sums s1, . . . , sr−1 computed by
threads with numbers smaller than r. This correction can be done in serial.

• Parallelize the provided serial code. Run it with different thread numbers and report
the architecture you run it on, the number of cores of the processor and the time it
takes.

2


