
Spring 2019: Advanced Topics in Numerical Analysis:
High Performance Computing

Example projects

• Parallel multigrid for the Laplace equation. Multigrid is an optimal complexity
solver for linear systems arising from elliptic partial differential equations or from
certain networks. We will present the basics of Multigrid, which heavily builds on the
Jacobi and Gauss-Seidel methods we have already used in class, in one of our lectures.
A project could focus on the implementation of parallel multigrid using finite-difference
approximation on a square or a cube either using MPI or CUDA.1

• Total variation image denoising. Implement a total variation image denoising
algorithm.2 Total variation regularization is a method to remove noise from images
while maintaining sharp edges in the image (i.e., not blurring them, as other filters
would do). Over the last decade, first-order methods using simple ideas from convex
analysis (you don’t need to know these for this project) for these problems have proven
to be useful. These algorithms map nicely on CPUs and GPUs as they do not require
the solution of linear systems. You could implement the algorithm first on a CPU and
then on a GPU.

• Adaptive finite volume solution of the wave equation. Parallel adaptive solution
of the wave equation using the finite volume method, using the p4est3 library for
adaptivity. The library supports parallel adaptive mesh refinement and includes an
example for the adaptive solution of the advection equation already. We are well
familiar with that library, which was developed by collaborators, and can thus provide
help.

• Fast Fourier Transform (FFT). The FFT is on the list of Top 10 numerical algo-
rithms4 developed in the last century. One of its applications is to use it for solving the
discrete Laplace equation (on a unit sphere or cube), possibly in parallel. Introduction
material can be found easily on the web5. One project could be to implement the FFT
algorithm using OpenMP or CUDA.

• Conway’s game of life in parallel Conway’s game of life6 is an example for a cellular
automaton that follows simple update rules from one generation to the next. Despite
their simplicity, these rules generate an impressive amount of complexity and beauty.7

Write an MPI-parallel (or a GPU) version of Conway’s game of life. Visualization is a

1Standard references are: Trottenberg, Oosterlee and Schuller: Multigrid, Academic Press (); Briggs,
Henson and McCormick: A Multigrid Tutorial, SIAM, (2000); See also https://people.cs.uchicago.

edu/~risi/NIPS15workshop/slides/Safro.pdf.
2https://pdfs.semanticscholar.org/2f3c/c010e6b137542315804fa3f7ad776a5ca1ad.pdf
3www.p4est.org
4https://www.siam.org/pdf/news/637.pdf
5See for instance http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html.
6See the Wikipedia page: https://en.wikipedia.org/wiki/Conways_Game_of_Life.
7See videos on youtube: https://www.youtube.com/results?search_query=conway+game+of+life.

https://people.cs.uchicago.edu/~risi/NIPS15workshop/slides/Safro.pdf
https://people.cs.uchicago.edu/~risi/NIPS15workshop/slides/Safro.pdf
https://pdfs.semanticscholar.org/2f3c/c010e6b137542315804fa3f7ad776a5ca1ad.pdf
www.p4est.org
https://www.siam.org/pdf/news/637.pdf
http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html
https://en.wikipedia.org/wiki/Conways_Game_of_Life
https://www.youtube.com/results?search_query=conway+game+of+life


bit tricky, you can either write to files and visualize externally or try to connect python
to your code and use python’s visualization (e.g., in pygame). Or try to google around
for different solutions.

• Parallel k-means clustering (or another clustering algorithm) The k-means
algorithm8 is a data mining algorithm for clustering data. Implement it either usig
MPI or CUDA and find several large data sets to apply it to.

• Matrix factorizations on a GPU Implement a matrix factorization (e.g., LU or
QR) on a GPU. A quick search will show you that efficient implementations of these
operations have been done before and that it is non-trivial to get good performance.
Attempt an implementation and study the performance in comparison to the cuBLAS
library.

• Parallel Delaunay triangulation This is used for constructing good quality triangle
meshes from point clouds. Several algorithms have been proposed for constructing De-
launay triangulation (see https://dl.acm.org/citation.cfm?id=1137900 and the
section on related work in that paper for a summary of existing algorithms). Pick any
one of the existing algorithms or propose your own scheme and implement a parallel
(using either OpenMP, MPI or CUDA) algorithm for Delaunay triangulation in 2D or
3D.

• Fluid mechanics simulation If you took the CFD class offered by our colleague
Aleks Donev last semester, you could take one of the final projects from there9 and
port it to a parallel architecture or a GPU.

• Parallel implementation of fast summation with Ewald sums. Study the paper
http://dx.doi.org/10.1016/j.jcp.2010.08.026, which describes a fast summation
method for periodic Stokes potentials. Understand and implement the method in
parallel.

• Parallel partitioning of large point clouds using an adaptive octree. In many
applications, it is necessary to distribute a (very) large set of points in two or three
dimensions in chunks of nearby points that roughly contain the same number of points.
One way to achieve that is through the use of an adaptive octree as follows: Enclose
all points in a (large enough) cube, and adaptively refine the cube until every sub-cube
(also called “leaf of the octree”) contains roughly the same number of data points.
Then, a uniform parallel distribution of these sub-cubes results in a roughly uniform
distribution of points of the data set. Such an adaptive refinement of the space is
often also the first step needed in the fast multipole method (FMM). You can use the
adaptive octree library p4est10, which implements the required octree functions. Use
a non-uniformly distributed (very) large point cloud data set (many such data sets are
available on the web11 to test your algorithm.

8https://en.wikipedia.org/wiki/K-means_clustering
9https://cims.nyu.edu/~donev/Teaching/CFD/Assignments.html

10www.p4est.org
11See, for instance http://www.pointclouds.org/news/2013/01/07/point-cloud-data-sets/.

https://dl.acm.org/citation.cfm?id=1137900
http://dx.doi.org/10.1016/j.jcp.2010.08.026
https://en.wikipedia.org/wiki/K-means_clustering
https://cims.nyu.edu/~donev/Teaching/CFD/Assignments.html
www.p4est.org
http://www.pointclouds.org/news/2013/01/07/point-cloud-data-sets/

