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Organization

Scheduling:
I Homework assignment #4 due today
I One short homework assignment posted tomorrow

Topics today:
I The distributed memory computing model
I Sources of parallelism
I Send and recv communication in MPI
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Final projects

I Everybody should know topic and teams members by now.

I On the next homework assignment, we will ask you to detail
your plans and list the steps you’re planning and when you
will be working on what.
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Programming models

I Flynn’s taxonomy:
I Single instruction–single data (SISD)
I Single instruction–multiple data (SIMD)
I Multiple instruction–multiple data (MIMD)

I Distributed memory vs. shared memory parallelism

I Programming models: OpenMP vs. Message passing interface
(MPI); and combinations thereof
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Process vs. thread

I A process is an independent execution unit, which contains
their own state information (pointers to instruction and
stack). One process can contain several threads.

I Threads within a process share the same address space, and
communicate directly using shared variables. Seperate stack
but shared heap memory.
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Parallelism and locality

I Moving data (through network or memory hierarchy) is slow
I Real world problems often have parallelism and locality, e.g.,

I objects move independently from each other (“embarrassingly
parallel”)

I objects mostly influence other objects nearby
I dependence on distant objects can be simplified
I Partial differential equations have locality properties

I Applications often exhibit parallelism at multiple levels
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Example I: Conway’s game of life
https://www.youtube.com/watch?v=C2vgICfQawE

I Played on a board of “cells”; simple rules decide on if a cell is
alive or dead in the next generation

I Is an example of a cellular automaton
I Amounts to checking the 8 neighbor cells in every generation
I How to parallelize? Decompose domain into subdomains. . .
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Example II: Particle systems

A particle system has a finite number of particles which move
according to Newton’s law (F = ma); particles can be stars
subject to gravity, atoms in a molecule, swimming fish, . . .
Force on each particle:

Foverall = Fexternal + Fnearby + Ffar

I external: background flow/ocean current/external electric field
I nearby attraction; collision force, Van der Waals forces
I far field: gravity, electrostatics
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Example II: External and nearby forces

External force: independent, “embarrassingly parallel”: evenly
distribute particles amongst processors.
Nearby force: requires neighbor communication; assume, for
instance collisions; need to check in “ghost layer” for particles on
neighboring processes

I interaction of particles near processor boundary
I load imbalance if particles cluster; must be adjusted
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Example II: Far field forces

Far field forces involve all-to-all communication
Simple algorithm: O(n2), where n is the number of particles.
More clever algorithms:

I Particle-mesh methods: interpolate particle force to nearest
grid point; solve far field PDE (e.g., FFT); interpolate force
back to particles

I Use tree construction; each node contains an approximation of
descendants: Fast multipole method (FMM)
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Example III: Sparse matrix-vector multiplication

Compressed sparse row (CSR) format:

CS267 Lecture 2 11 

01/29/2015! CS267 Lecture 4! 41!

Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) 
 
for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV in Compressed Sparse Row (CSR) Format 

Matrix-vector multiply kernel: y(i) ! y(i) + A(i,j)⋅x(j) 
 
for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

A y 

x Representation of A 

SpMV: y = y + A*x,       only store, do arithmetic, on nonzero entries 
CSR format is simplest one of many possible data structures for A 

01/29/2015! CS267 Lecture 4! 42!

Parallel Sparse Matrix-vector multiplication 
•  y = A*x, where A is a sparse  n x n matrix 

•  Questions 
•  which processors store 

•  y[i], x[i], and A[i,j] 
•  which processors compute 

•  y[i] = sum (from 1 to n) A[i,j] * x[j] 
            = (row i of A) * x          … a sparse dot product 

•  Partitioning 
•  Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np. 
•  For all i in Nk, Processor k stores y[i], x[i], and row i of A  
•  For all i in Nk, Processor k computes y[i] = (row i of A) * x 

•  �owner computes��rule: Processor k compute the y[i]s it owns. 

x 

y 

P1 

P2 

P3 

P4 

May require 
communication 

01/29/2015! CS267 Lecture 4! 43!

Matrix Reordering via Graph Partitioning 
•  �Ideal� matrix structure for parallelism: block diagonal 

•  p (number of processors) blocks, can all be computed locally. 
•  If no non-zeros outside these blocks, no communication needed 

• Can we reorder the rows/columns to get close to this? 
•  Most nonzeros in diagonal blocks, few outside 

P0!

P1!

P2!

P3!

P4!

= * 

P0    P1   P2   P3  P4  !

01/29/2015! CS267 Lecture 4! 44!

Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 

•  Approx equal number of nonzeros (not necessarily rows) 
•  balance storage (how much does each processor store?). 

•  Approx equal number of nonzeros 
•  minimize communication (how much is communicated?). 

•  Minimize nonzeros outside diagonal blocks 
•  Related optimization criterion is to move nonzeros near diagonal 

•  improve register and cache re-use 
•  Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 
•  Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality) 

• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Matrix multiplication kernel: y = y +Ax:
for each row i

for k = ptr[i] to ptr[i+ 1]− 1 do
y[i] = Aval[k]x[ind[k]]
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Example III: Sparse matrix-vector multiplication

How parallelize? Which processes compute/store which part of A,
x, y?
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Matrix Reordering via Graph Partitioning 
•  �Ideal� matrix structure for parallelism: block diagonal 

•  p (number of processors) blocks, can all be computed locally. 
•  If no non-zeros outside these blocks, no communication needed 

• Can we reorder the rows/columns to get close to this? 
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Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 

•  Approx equal number of nonzeros (not necessarily rows) 
•  balance storage (how much does each processor store?). 

•  Approx equal number of nonzeros 
•  minimize communication (how much is communicated?). 

•  Minimize nonzeros outside diagonal blocks 
•  Related optimization criterion is to move nonzeros near diagonal 

•  improve register and cache re-use 
•  Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 
•  Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality) 

• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Partition into index sets, and distribute to different processes.
Requires communication if x is distributed as well.
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Example III: Sparse matrix-vector multiplication

How parallelize? Which processes compute/store which part of A,
x, y?
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Goals of Reordering 

• Performance goals 
•  balance load (how is load measured?). 

•  Approx equal number of nonzeros (not necessarily rows) 
•  balance storage (how much does each processor store?). 

•  Approx equal number of nonzeros 
•  minimize communication (how much is communicated?). 

•  Minimize nonzeros outside diagonal blocks 
•  Related optimization criterion is to move nonzeros near diagonal 

•  improve register and cache re-use 
•  Group nonzeros in small vertical blocks so source (x) elements 

loaded into cache or registers may be reused (temporal locality) 
•  Group nonzeros in small horizontal blocks so nearby source (x) 

elements in the cache may be used (spatial locality) 

• Other algorithms reorder for other reasons 
•  Reduce # nonzeros in matrix after Gaussian elimination 
•  Improve numerical stability 

Communication can be reduced with proper ordering of
rows/columns of A.
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Example III: Sparse matrix-vector multiplication

How parallelize? Which processes compute/store which part of A,
x, y?

CS267 Lecture 2 12 

01/29/2015! CS267 Lecture 4! 45!

Graph Partitioning and Sparse Matrices  

1    1                     1      1 

2           1     1       1      1 

3           1     1                      1 

4    1     1             1               1  

5    1     1                      1      1 

6                    1     1      1      1 

  1     2      3      4      5      6 

3

6

1

5

2

• Relationship between matrix and graph 

•  Edges in the graph are nonzero in the matrix: here the matrix is 
symmetric (edges are unordered) and weights are equal (1) 

•  If divided over 3 procs, there are 14 nonzeros outside the diagonal 
blocks, which represent the 7 (bidirectional) edges 

4

01/29/2015! CS267 Lecture 4! 46!

Summary: Common Problems 

•  Load Balancing 
•  Statically - Graph partitioning 

•  Discrete systems 
•  Sparse matrix vector multiplication 

•  Dynamically – if load changes significantly during job 
•  Linear algebra 

•  Solving linear systems (sparse and dense) 
•  Eigenvalue problems will use similar techniques 

• Fast Particle Methods 
•  O(n log n) instead of O(n2) 

01/29/2015!

Motif/Dwarf: Common Computational Methods    
(Red Hot → Blue Cool) 

Em
be

d

SP
EC

D
B

G
am

es

M
L

H
PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common? 

CS267 Lecture 4! 47!

Reordering and Graph Partitioning: Edges in graph correspond to
nonzeros in matrix. Graph partitioning ↔ minimizing
communication in parallel matrix-vector multiplication.
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Example IV: Partial differential equations

Types of PDEs influence parallelism
I Elliptic PDE (gravitation,elasticity,. . . ): Steady-state, global

dependence in space
I Hyperbolic PDE: (acoustic/electromagnetic waves,. . . ):

Time-dependent, local dependence in space
I Parabolic PDE (heat flow, diffusion,. . . ): Time-dependent,

global space dependence
Many PDEs (e.g., Navier-Stokes equation) combine properties of
these basic types.

16 / 24



Example IV: Partial differential equations: elliptic

−∆u = f on Ω
+ bdry cond.

After discretization, this is becomes a system with a positive
definite, symmetric matrix. Efficient solvers include geometric or
algebraic multigrid or FFT (requires proper boundary conditions
and mesh). Parallel Gauss elimination allow limited parallelism.

Field governing mesh refinement (left). Mesh partitioning, each color
illustrates mesh portion owned by a different processor (right).
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Example IV: Partial differential equations: hyperbolic

utt −∆u = f on Ω
+ bdry cond.
+ initial cond.

Often, method of choice is explicit time stepping, which requires a
matrix-vector multiplication in each time step:

uk+1 = uk + δtAuk

Explicit time stepping is commonly used. CFL stability does not
restrict the size of the time step δt significantly.
Parallelization based on decomposition of mesh (leads to a similar
decomposition as for sparse matrices).
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Example IV: Partial differential equations: parabolic

ut −∆u = f on Ω
+ bdry cond.
+ initial cond.

Stability is a problem for explicit time stepping (requires very small
time step!). Thus, one usually uses implicit time stepping:

uk+1 = uk + δtAuk+1,

which requires to solve systems in every time step. These are
similar as in the case of an elliptic PDE (solvers: multigrid,
FMM,. . . ) Parallelization based on decomposition of mesh.
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Example IV: Partial differential equations: parallel-in-time
Parallelization-in-time is an active field of research. Basic idea:

I Use a fast and inaccurate serial time integration method Φ̄ as
starting guess

I Iterative local-in-time parallel correction with more accurate
time integration Φ
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Introduction to MPI

Use B. Gropp’s PPT slides

https://github.com/NYU-HPC19/lecture10
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Outline

• Background
– The message-passing model
– Origins of MPI and current status
– Sources of further MPI information

• Basics of MPI message passing
– Hello, World!
– Fundamental concepts
– Simple examples in Fortran and C

• Extended point-to-point operations
– non-blocking communication
– modes
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The Message-Passing Model

• A process is (traditionally) a program counter and 
address space.

• Processes may have multiple threads (program 
counters and associated stacks) sharing a single 
address space.  MPI is for communication among 
processes, which have separate address spaces.

• Interprocess communication consists of 
– Synchronization
– Movement of data from one process’s address space 

to another’s.
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Cooperative Operations for Communication

• The message-passing approach makes the exchange 
of data cooperative.

• Data is explicitly sent by one process and received by 
another.

• An advantage is that any change in the receiving 
process’s memory is made with the receiver’s explicit 
participation.

• Communication and synchronization are combined.

Process 0 Process 
1Send(data)
Receive(data)
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One-Sided Operations for Communication

• One-sided operations between processes include 
remote memory reads and writes

• Only one process needs to explicitly participate.
• An advantage is that communication and 

synchronization are decoupled
• One-sided operations are part of MPI-2.

Process 0 Process 
1Put(data)
(memory)

(memory)
Get(data)
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What is MPI?
• A message-passing library specification

– extended message-passing model
– not a language or compiler specification
– not a specific implementation or product

• For parallel computers, clusters, and 
heterogeneous networks

• Full-featured
• Designed to provide access to advanced parallel 

hardware for
– end users
– library writers
– tool developers



�7

Why Use MPI?

• MPI provides a powerful, efficient, and 
portable way to express parallel programs

• MPI was explicitly designed to enable 
libraries… 

• … which may eliminate the need for many 
users to learn (much of) MPI
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A Minimal MPI Program (C)

#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    MPI_Init( &argc, &argv ); 
    printf( "Hello, world!\n" ); 
    MPI_Finalize(); 
    return 0; 
}
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Running MPI Programs

• The MPI-1 Standard does not specify how to run an MPI 
program, just as the Fortran standard does not specify 
how to run a Fortran program.

• In general, starting an MPI program is dependent on the 
implementation of MPI you are using, and might require 
various scripts, program arguments, and/or environment 
variables.

• mpiexec –np 3 <args> or  

• mpirun –np 3 <args> (not specified in MPI 
standard)
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Finding Out About the Environment

• Two important questions that arise early in a 
parallel program are:
– How many processes are participating in this 

computation?
– Which one am I?

• MPI provides functions to answer these 
questions:
– MPI_Comm_size reports the number of processes. 
– MPI_Comm_rank reports the rank, a number between 

0 and size-1, identifying the calling process
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Better Hello (C)

#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
}
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MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
– How will “data” be described?
– How will processes be identified?
– How will the receiver recognize/screen messages?
– What will it mean for these operations to complete?

Process 0 Process 
1Send(data)
Receive(data)



�13

What is message passing?
• Data transfer plus synchronization

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

Data
Data
Data
Data
Data
Data
Data
Data

Time
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Some Basic Concepts

• Processes can be collected into groups.
• Each message is sent in a context, and must be 

received in the same context.
• A group and context together form a communicator.
• A process is identified by its rank in the group 

associated with a communicator.
• There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD.
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MPI Datatypes

• The data in a message to sent or received is described 
by a triple (address, count, datatype), where

• An MPI datatype is recursively defined as:
– predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)
– a contiguous array of MPI datatypes
– a strided block of datatypes
– an indexed array of blocks of datatypes
– an arbitrary structure of datatypes

• There are MPI functions to construct custom 
datatypes, such an array of (int, float) pairs, or a row of 
a matrix stored columnwise.
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MPI Tags

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving 
process in identifying the message.

• Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a receive.

• Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes.
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MPI Basic (Blocking) Send
MPI_SEND (start, count, datatype, dest, tag, comm)

• The message buffer is described by (start, count, 
datatype).

• The target process is specified by dest, which is the 
rank of the target process in the communicator specified 
by comm.

• When this function returns, the data has been delivered 
to the system and the buffer can be reused.  The 
message may not have been received by the target 
process.
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MPI Basic (Blocking) Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is 
received from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE. 

• status contains further information 
• Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error.
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Why Datatypes?

• Since all data is labeled by type, an MPI 
implementation can support communication between 
processes on machines with very different memory 
representations and lengths of elementary datatypes 
(heterogeneous communication).

• Specifying application-oriented layout of data in 
memory
– reduces memory-to-memory copies in the implementation
– allows the use of special hardware (scatter/gather) when 

available
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Tags and Contexts

• Separation of messages used to be accomplished by 
use of tags, but
– this requires libraries to be aware of tags used by other 

libraries.
– this can be defeated by use of “wild card” tags.

• Contexts are different from tags
– no wild cards allowed
– allocated dynamically by the system when a library sets up a 

communicator for its own use.
• User-defined tags still provided in MPI for user 

convenience in organizing application
• Use MPI_Comm_split to create new communicators 
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MPI is Simple

• Many parallel programs can be written using 
just these six functions, only two of which are 
non-trivial:
– MPI_INIT 
– MPI_FINALIZE 
– MPI_COMM_SIZE 
– MPI_COMM_RANK 
– MPI_SEND 
– MPI_RECV 

• Point-to-point (send/recv) isn’t the only way...
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Introduction to Collective Operations in 
MPI

• Collective operations are called by all 
processes in a communicator.

• MPI_BCAST distributes data from one process 
(the root) to all others in a communicator.

• MPI_REDUCE combines data from all 
processes in communicator and returns it to 
one process.

• In many numerical algorithms, SEND/RECEIVE 
can be replaced by BCAST/REDUCE, improving 
both simplicity and efficiency.
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• Send a large message from process 0 to process 1
– If there is insufficient storage at the destination, the send must wait for the user to provide the memory 

space (through a receive)
• What happens with  
 
 
 

Sources of Deadlocks

Process 0

Send(1) 
Recv(1)

Process 1

Send(0) 
Recv(0)

• This is called “unsafe” because it depends on the availability of 
system buffers 
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Some Solutions to the “unsafe” Problem

• Order the operations more carefully:
Process 0

Send(1) 
Recv(1)

Process 1

Recv(0) 
Send(0)

• Use non-blocking operations:

Process 0

Isend(1) 
Irecv(1) 
Waitall

Process 1

Isend(0) 
Irecv(0) 
Waitall
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Distributed Memory Performance Models

Postal model:
I Hockney, Jesshope: Parallel Computers 2: architecture,

programming and algorithms (1988)
I Simplest model for distributed memory point-to-point

communication.
I Parameters: latency (ts), per-word-transfer time (tw)

tcomm = ts + tw m

where, m is the message size in bytes.

Other models:
I LogP model: latency (L), overhead (o), per-word-transfer

time (g), number of processors (P )
24 / 24
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