
Advanced Topics in Numerical Analysis:
High Performance Computing

Distributed memory algorithms (MPI)

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

April 22, 2019

1 / 26



Outline

Organization issues

Submitting jobs through a scheduler

Summary of previous class

MPI collectives

2 / 26



Organization

Scheduling:
I (Short) homework assignment #5 posted, due next week; you

are asked to provide an update on your final project
I There will be one more (last) homework assignment

Topics today:
I Job schedulers: SLURM
I Collective communication in MPI and many examples

3 / 26



Outline

Organization issues

Submitting jobs through a scheduler

Summary of previous class

MPI collectives

4 / 26



Submitting jobs through a scheduler (e.g., on Prince)
Overview of HPC cluster

5 / 26



Submitting jobs on Prince

Prince user guide: https:
//wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince

Batch facilities: SGE, LSF, SLURM. Prince uses SLURM, and
these are some of the basic commands:

I submit/start a job: sbatch jobscript
I submit/start a job (interactive):

srun <options> --pty /bin/bash
I see status of my job: squeue -u USERNAME
I cancel my job: scancel JOBID
I see all jobs on machine: squeue | less

6 / 26

https://wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince
https://wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince


Submitting jobs on Prince

Some basic rules:
I Don’t run on the login node!
I Don’t abuse the shared file system.

7 / 26



Submitting jobs on Prince

#!/bin/bash
#SBATCH --nodes=1 \# total number of mpi tasks
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --time=5:00:00
#SBATCH --mem=2GB
#SBATCH --job-name=myTest
#SBATCH --mail-type=END \# email me when the job finishes
#SBATCH --mail-user=first.last@nyu.edu
#SBATCH --output=slurm_%j.out

module purge
module load ...
./myexecutable

8 / 26



Outline

Organization issues

Submitting jobs through a scheduler

Summary of previous class

MPI collectives

9 / 26



More MPI

Last Class
I The distributed memory computing model
I Sources of parallelism
I Send and recv communication in MPI
I Communication costs (Postal model):

I Latency + 1/bandwidth * message length

10 / 26



Parallelism and locality

I Moving data (through network or memory hierarchy) is slow
I Real world problems often have parallelism and locality, e.g.,

I objects move independently from each other (“embarrassingly
parallel”)

I objects mostly influence other objects nearby
I dependence on distant objects can be simplified
I Partial differential equations have locality properties

I Applications often exhibit parallelism at multiple levels

11 / 26



Parallelism and locality—examples

Examples from last class:
I Conway’s game of life—parallelism through domain

decomposition
I Particle systems (background forces, neighbor forces, far-field

forces) — domain decomposition
I Sparse/dense matrix-vector multiplication–row-wise storage
I PDE solution (elliptic/hyperbolic/parabolic)

12 / 26



MPI Send/Recv Modes
MPI send modes:

I Standard Send (MPI Send): return when the send array can
be re-used.

I Buffered Send (MPI Bsend): returns when message is copied
to a secondary buffer (send array can be re-used). Buffering
requires extra overhead and should be avoided.

I Synchronous Send (MPI Ssend): returns when the message
has been received by the receiving process (send array can be
re-used).

I Non-blocking Send (MPI Isend): returns immediately, the
send array cannot be reused until MPI Wait() returns.

I Other send modes
MPI recv modes:

I Standard Recv (MPI Revc): return when the message has
been received

I Standard Non-blocking Recv (MPI Irevc): return immediately,
the recv array cannot be used until MPI Wait returns.

13 / 26

https://www.mcs.anl.gov/research/projects/mpi/sendmode.html


Deadlock-free send/recv patterns
Blocking send and recv

Process-0
MPI Sendrecv(...)
// · · · can use recv array now

Process-1
MPI Sendrecv(...)
// · · · can use recv array now

Blocking send, non-blocking recv

Process-0
MPI Irecv(... , recv request)
MPI Send(...)
// · · · other code
MPI Wait(recv request, ...)
// · · · can use recv array now

Process-1
MPI Irecv(... , recv request)
MPI Send(...)
// · · · other code
MPI Wait(recv request, ...)
// · · · can use recv array now

14 / 26



Deadlock-free send/recv patterns

Non-blocking send and recv

Process-0
MPI Irecv(... , recv request)
MPI Isend(... , send request)
// · · · other code
MPI Wait(recv request, ...)
MPI Wait(send request, ...)
// · · · can use send/recv arrays

Process-1
MPI Irecv(... , recv request)
MPI Isend(... , send request)
// · · · other code
MPI Wait(recv request, ...)
MPI Wait(send request, ...)
// · · · can use send/recv arrays

15 / 26



Outline

Organization issues

Submitting jobs through a scheduler

Summary of previous class

MPI collectives

16 / 26



MPI Collectives

I Calls that involve more than 2 processes (also called
point-to-point)

I Could also be done with Sends and Recvs, but more efficient
and concenient

I Can be one-to-all or all-to-all
I Every process needs to see the collective call to avoid hangs!
I Actual implementation depends on MPI library (and possibly

on the network type)

Code examples: https://github.com/NYU-HPC19/lecture11

Tutorial: http://mpitutorial.com/tutorials/

17 / 26

https://github.com/NYU-HPC19/lecture11
http://mpitutorial.com/tutorials/


Network types: topologies

18 / 26



Network types: metrics

I Diameter: maximum distance between any two nodes
I Connectivity: number of links needed to remove to isolate a

node
I Bisection width: number of links to be removed to break

network into equal parts
I Cost: Total number of links

19 / 26



Network types: topologies

20 / 26



MPI Barrier
Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.
MPI Barrier(MPI Comm communicator)

21 / 26



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).
MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

22 / 26



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).
MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

22 / 26



MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.
MPI Reduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm
communicator)

Possible Reduce operators:
MPI MAX: Returns the maximum element.
MPI MIN: Returns the minimum element.
MPI SUM: Sums the elements.
MPI PROD: Multiplies all elements.
MPI LAND: Performs a logical and across the elements.
MPI LOR: Performs a logical or across the elements.
MPI BAND: Performs a bitwise and across the bits of the elements.
MPI BOR: Performs a bitwise or across the bits of the elements.
MPI MAXLOC: Returns the maximum value and the rank of the process that owns it.
MPI MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI Allreduce(): Provides result of reduction too all processors.

23 / 26



MPI Scatter
Broadcasts different data from one to all processors. Every
processor calls same function.
MPI Scatter(void* sendbuff, int sendcount,
MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, int root, MPI Comm
communicator)

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor. Variable-sized
variant is MPI Scatterv.

24 / 26



MPI Gather

Gathers different data from all to one processors. Every processor
calls same function. Gather is (more or less) the opposite of
scatter.
MPI Gather(void* sendbuff, int sendcount, MPI Datatype
sendtype, void* recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm communicator)

MPI Allgather() gathers from all processors to all processors.
Variable-sized variant is MPI Gatherv.

25 / 26



MPI All-to-all
Shares data from each to each processor.
MPI Alltoall(void *sendbuf, int count, MPI Datatype
sendtype, void *recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

Example: matrix-transpose or sorting. Variable-sized variant is
called MPI Alltoallv.

26 / 26


	Organization issues
	Submitting jobs through a scheduler
	Summary of previous class
	MPI collectives

