
Advanced Topics in Numerical Analysis:
High Performance Computing

More distributed memory algorithms

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

April 29, 2019

1 / 36



Outline

Organization issues

Summary of previous class

Distributed memory algorithms

Partitioning and Load Balancing

2 / 36



Organization

Scheduling:
I Homework assignment #5 due tonight; one last assignment

posted this week (due in 2 weeks)
I How are your final projects coming along?

Topics today:
I Collective communication in MPI: more examples
I Algorithms: Sorting
I Partitioning and balancing

3 / 36



Outline

Organization issues

Summary of previous class

Distributed memory algorithms

Partitioning and Load Balancing

4 / 36



MPI Collectives

I Calls that involve more than 2 processes (also called
point-to-point)

I Could also be done with Sends and Recvs, but more efficient
and concenient

I Can be one-to-all or all-to-all
I Every process needs to see the collective call to avoid hangs!
I Actual implementation depends on MPI library (and possibly

on the network type)

Tutorial: http://mpitutorial.com/tutorials/

5 / 36

http://mpitutorial.com/tutorials/


MPI Barrier
Synchronizes all processes. Other collective functions implicitly act
as a synchronization. Used for instance for timing.
MPI Barrier(MPI Comm communicator)

6 / 36



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).
MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

7 / 36



MPI Broadcast

Broadcasts data from one to all processors. Every processor calls
same function (although its effect is different).
MPI Bcast(void* data, int count, MPI Datatype
datatype, int root, MPI Comm communicator)

Actual implementation depends on MPI library.

7 / 36



MPI Reduce

Reduces data from all to one processors. Every processor calls
same function.
MPI Reduce(void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm
communicator)

Possible Reduce operators:
MPI MAX: Returns the maximum element.
MPI MIN: Returns the minimum element.
MPI SUM: Sums the elements.
MPI PROD: Multiplies all elements.
MPI LAND: Performs a logical and across the elements.
MPI LOR: Performs a logical or across the elements.
MPI BAND: Performs a bitwise and across the bits of the elements.
MPI BOR: Performs a bitwise or across the bits of the elements.
MPI MAXLOC: Returns the maximum value and the rank of the process that owns it.
MPI MINLOC: Returns the minimum value and the rank of the process that owns it.

MPI Allreduce(): Provides result of reduction too all processors.

8 / 36



MPI Scatter
Broadcasts different data from one to all processors. Every
processor calls same function.
MPI Scatter(void* sendbuff, int sendcount,
MPI Datatype sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, int root, MPI Comm
communicator)

Send arguments must be provided on all processors, but sendbuf
can be NULL. Send/recv count are per processor. Variable-sized
variant is MPI Scatterv.

9 / 36



MPI Gather

Gathers different data from all to one processors. Every processor
calls same function. Gather is (more or less) the opposite of
scatter.
MPI Gather(void* sendbuff, int sendcount, MPI Datatype
sendtype, void* recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm communicator)

MPI Allgather() gathers from all processors to all processors.
Variable-sized variant is MPI Gatherv.

10 / 36



MPI All-to-all
Shares data from each to each processor.
MPI Alltoall(void *sendbuf, int count, MPI Datatype
sendtype, void *recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

Example: matrix-transpose or sorting. Variable-sized variant is
called MPI Alltoallv.

11 / 36



Outline

Organization issues

Summary of previous class

Distributed memory algorithms

Partitioning and Load Balancing

12 / 36



Parallel Jacobi in 1D
Blocking Send and Recv

 

Jacobismoothing Compute Ate repeatedly

A
O X X I l

Dean Po IN a Nsp
t in each iteration

Iif It copyrightentry copyofvalue 8TosTriathes

Tf P2 on P2 2 compute Unew
using Jacobi

1J Ps local step

nonblochingreesia stab communicating ghost
values using iSend iReer

2 Jacobi for anew for interior points
finish communication check with

MPI Wait
4 update 2 remaining entries first
last in eachrecta

inteeleaf communication with computation

https://github.com/NYU-HPC19/lecture12

13 / 36

https://github.com/NYU-HPC19/lecture12


Parallel Jacobi in 1D
Non-blocking Send and Recv

 

Jacobismoothing Compute Ate repeatedly

A
O X X I l

Dean Po IN a Nsp
t in each iteration

Iif It copyrightentry copyofvalue 8TosTriathes

Tf P2 on P2 2 compute Unew
using Jacobi

1J Ps local step

nonblochingreesia stab communicating ghost
values using iSend iReer

2 Jacobi for anew for interior points
finish communication check with

MPI Wait
4 update 2 remaining entries first
last in eachrecta

inteeleaf communication with computation

https://github.com/NYU-HPC19/lecture12

14 / 36

https://github.com/NYU-HPC19/lecture12


Collective Communication Algorithms
Book: Introduction to Parallel Computing, Ananth Grama, Anshul
Gupta, George Karypis, Vipin Kumar (Chapter 4)

Naive broadcast algorithm

Communication cost: T (m, p) = ts × p + tw ×m× p

where,
ts = latency
tw = 1/bandwidth
p = number of processes
m = message size

15 / 36

https://www-users.cs.umn.edu/~karypis/parbook/
https://www-users.cs.umn.edu/~karypis/parbook/


Hypercube Broadcast Algorithms
Tree based algorithm and assuming an uncongested network

I in each stage communicate along one dimension of the
hypercube

Cost: T (m, p) = ts × log p + tw ×m log p

Similar idea for MPI Reduce, MPI Allreduce, MPI Allgather,
MPI Alltoall etc.

16 / 36



Distributed Sorting Algorithms

Book: Introduction to Parallel Computing, Ananth Grama, Anshul
Gupta, George Karypis, Vipin Kumar (Chapter 9)

Bucket sort
I partition input array evenly across p processes

I assign n/p elements to each process
I Create p buckets
I Each process sorts its elements to buckets
I Alltoallv(), pth processor gets pth bucket
I local sort of elements in pth bucket
I Works only for uniform distribution of elements.

17 / 36

https://www-users.cs.umn.edu/~karypis/parbook/
https://www-users.cs.umn.edu/~karypis/parbook/


Distributed Sorting Algorithms

Sample Sort
I partition input array evenly across p processes
I sort locally
I select (p-1) splitters/processor (evenly)

I guarantees no more 2*n/p elements / bucket
I gather(splitters) in P0
I sort splitters in P0 and create buckets

I block partition using p binsearch on n/p sorted seq.
I broadcast buckets
I bucket sort

18 / 36



Distributed Sample Sort (Example)

19 / 36



Cost Sample Sort

I sort() locally: O(n/p log n/p)
I select p-1 splitters/proc : O(p)
I gather(splitters) in P0: O(p2)
I sort splitters in P0 and create p-1 new splitters O(p2 log p)
I broadcast(new splitters) O(p log p)
I parallel bucket sort

using new splitters O(n/p log n/p + p log n/p + n/p)

20 / 36



Outline

Organization issues

Summary of previous class

Distributed memory algorithms

Partitioning and Load Balancing

21 / 36



Partitioning and Load Balancing

Thanks to Marsha Berger for letting me use many of her slides. Thanks
to the Schloegel, Karypis and Kumar survey paper and the Zoltan

website for many of these slides and pictures.

22 / 36



Partitioning

I Decompose computation into tasks to equi-distribute the data
and work, minimize processor idle time.
applies to grid points, elements, matrix rows, particles, . . .

I Map to processors to keep interprocessor communication low.
communication to computation ratio comes from both the
partitioning and the algorithm.

23 / 36



Partitioning
Data decomposition + Owner computes rule:

I Data distributed among the processors
I Data distribution defines work assignment
I Owner performs all computations on its data.
I Data dependencies for data items owned by different

processors incur communication

24 / 36



Partitioning

I Static - all information available before computation starts

use off-line algorithms to prepare before execution time; run as
pre-processor, can be serial, can be slow and expensive, starts.

I Dynamic - information not known until runtime, work changes
during computation (e.g. adaptive methods), or locality of
objects change (e.g. particles move)

use on-line algorithms to make decisions mid-execution; must
run side-by-side with application, should be parallel, fast,
scalable. Incremental algorithm preferred (small changes in
input result in small changes in partitions)

will look at some geometric methods, graph-based methods, spectral
methods, multilevel methods, diffusion-based balancing,...

25 / 36



Recursive Coordinate Bisection

Divide work into two equal parts using cutting plane orthogonal to
coordinate axis For good aspect ratios cut in longest dimension.

1st cut 

2nd 

2nd 

3rd 

3rd 3rd 

3rd 

Geometric Partitioning 

Applications of Geometric Methods 

Parallel Volume Rendering 

Crash Simulations 
and Contact Detection 

Adaptive Mesh Refinement 
Particle Simulations 

Can generalize to k-way partitions. Finding optimal partitions is
NP hard. (There are optimality results for a class of graphs as a
graph partitioning problem.)

26 / 36



Recursive Coordinate Bisection

+ Conceptually simple, easy to implement, fast.
+ Regular subdomains, easy to describe
– Need coordinates of mesh points/particles.
– No control of communication costs.
– Can generate disconnected subdomains

27 / 36



Recursive Coordinate Bisection

Implicitly incremental - small changes in data result in small
movement of cuts

28 / 36



Recursive Inertial Bisection

For domains not oriented along coordinate axes can do better if
account for the angle of orientation of the mesh.

Use bisection line orthogonal to principal inertial axis (treat mesh
elements as point masses). Project centers-of-mass onto this axis;
bisect this ordered list. Typically gives smaller subdomain
boundary.

29 / 36



Space-filling Curves
Linearly order a multidimensional mesh (nested hierarchically,
preserves locality)

Peano-Hilbert ordering

Morton ordering

30 / 36



Space-filling Curves

Easily extends to adaptively refined meshes

1

3

2827

26 25
24 23
22
2120

19 18
17
1615

13 14
1211

10

98

7
65

4

2

31 / 36



Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.

32 / 36



Space-filling Curves

+ Generalizes to uneven work loads - incorporate weights.
+ Dynamic on-the-fly partitioning for any number of nodes.
+ Good for cache performance

33 / 36



Space-filling Curves

– Red region has more communication - not compact
– Need coordinates

34 / 36



Space-filling Curves

Generalizes to other non-finite difference problems, e.g. particle
methods, patch-based adaptive mesh refinement, smooth particle
hydro.,

35 / 36



Space-filling Curves

Implicitly incremental - small changes in data results in small
movement of cuts in linear ordering

36 / 36


	Organization issues
	Summary of previous class
	Distributed memory algorithms
	Partitioning and Load Balancing

