
Advanced Topics in Numerical Analysis:
High Performance Computing

More distributed memory algorithms

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

May 6, 2019

1 / 27

Outline

Organization issues

Summary of previous class

Multigrid

2 / 27

Organization

Scheduling:
I Homework assignment #6 posted last week, due next Monday.
I How are your final projects coming along? Special office hours

for final project this week: Wednesday 1-2pm and Thursday
noon-1pm in office #1111. Come by!

Topics today:
I Partitioning and balancing: space filling curves
I Multigrid

3 / 27

Outline

Organization issues

Summary of previous class

Multigrid

4 / 27

Partitioning and Load Balancing

Thanks to Marsha Berger for letting me use many of her slides. Thanks
to the Schloegel, Karypis and Kumar survey paper and the Zoltan

website for many of these slides and pictures.

5 / 27

Partitioning

I Decompose computation into tasks to equi-distribute the data
and work, minimize processor idle time.
applies to grid points, elements, matrix rows, particles, . . .

I Map to processors to keep interprocessor communication low.
communication to computation ratio comes from both the
partitioning and the algorithm.

6 / 27

Partitioning
Data decomposition + Owner computes rule:

I Data distributed among the processors
I Data distribution defines work assignment
I Owner performs all computations on its data.
I Data dependencies for data items owned by different

processors incur communication

7 / 27

Partitioning

I Static - all information available before computation starts

use off-line algorithms to prepare before execution time; run as
pre-processor, can be serial, can be slow and expensive, starts.

I Dynamic - information not known until runtime, work changes
during computation (e.g. adaptive methods), or locality of
objects change (e.g. particles move)

use on-line algorithms to make decisions mid-execution; must
run side-by-side with application, should be parallel, fast,
scalable. Incremental algorithm preferred (small changes in
input result in small changes in partitions)

will look at some geometric methods, graph-based methods, spectral
methods, multilevel methods, diffusion-based balancing,...

8 / 27

Recursive Coordinate Bisection

Divide work into two equal parts using cutting plane orthogonal to
coordinate axis For good aspect ratios cut in longest dimension.

1st cut

2nd

2nd

3rd

3rd 3rd

3rd

Geometric Partitioning

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Can generalize to k-way partitions. Finding optimal partitions is
NP hard. (There are optimality results for a class of graphs as a
graph partitioning problem.)

9 / 27

Recursive Coordinate Bisection

+ Conceptually simple, easy to implement, fast.
+ Regular subdomains, easy to describe
– Need coordinates of mesh points/particles.
– No control of communication costs.
– Can generate disconnected subdomains

10 / 27

Recursive Coordinate Bisection

Implicitly incremental - small changes in data result in small
movement of cuts

11 / 27

Recursive Inertial Bisection

For domains not oriented along coordinate axes can do better if
account for the angle of orientation of the mesh.

Use bisection line orthogonal to principal inertial axis (treat mesh
elements as point masses). Project centers-of-mass onto this axis;
bisect this ordered list. Typically gives smaller subdomain
boundary.

12 / 27

Space-filling Curves
Linearly order a multidimensional mesh (nested hierarchically,
preserves locality)

Peano-Hilbert ordering

Morton ordering

13 / 27

Space-filling Curves

Easily extends to adaptively refined meshes

1

3

2827

26 25
24 23
22
2120

19 18
17
1615

13 14
1211

10

98

7
65

4

2

14 / 27

Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.

15 / 27

Space-filling Curves

+ Generalizes to uneven work loads - incorporate weights.
+ Dynamic on-the-fly partitioning for any number of nodes.
+ Good for cache performance

16 / 27

Space-filling Curves

– Red region has more communication - not compact
– Need coordinates

17 / 27

Space-filling Curves

Generalizes to other non-finite difference problems, e.g. particle
methods, patch-based adaptive mesh refinement, smooth particle
hydro.,

18 / 27

Space-filling Curves

Implicitly incremental - small changes in data results in small
movement of cuts in linear ordering

19 / 27

Morton Ordering

Computing Morton Indedx:
I convert coordinate to integers
I interleave the bits to generate a new integer
I works for arbitrary dimension (1D, 2D, 3D, 4D, ...)

20 / 27

Application to N-body codes

References
I H. Sundar, R.S. Sampath,

G. Biros - Bottom Up
Construction and 2:1
Balance Refinement of
Linear Octrees in Parallel

I M.S.Warren and J.K.Salmon
- A Parallel HashedOct-Tree
N-Body Algorithm

21 / 27

Application to N-body codes

Parallel Tree Construction
I compute Morton Ids of

particles;
I parallel sort and partition

across processes
I construct local tree on each

process
I adjust for overlapping tree

nodes at process boundaries.

21 / 27

Application to N-body codes

Communication
I all processes store the

starting Morton IDs of each
partition

I to fetch a data element with
given coordinates, we can
determine the process ID to
communicate with using a
binary search in the list of
starting Morton IDs
(O(log p) cost).

21 / 27

Visualization

I Useful for interpreting results.
I Can also be helpful for debugging!

Software
I Paraview
I Visit
I TecPlot

22 / 27

Visualization ToolKit (VTK) File Format

Reference: The VTK User’s Guide

Simple Text Format
XML Format

23 / 27

http://dx.doi.org/10.17487/rfc0678

VTK Cell Types

Examples: https://github.com/NYU-HPC19/lecture13
24 / 27

https://github.com/NYU-HPC19/lecture13

Outline

Organization issues

Summary of previous class

Multigrid

25 / 27

How solve large linear systems?

Many linear solvers are available: factorization-based solvers (LU,
Choleski), fast direct solvers (for specific problems), Krylov solvers
(CG, MINRES, GMRES,. . .), optimal complexity (O(n)) solvers
for certain problems (multigrid, FMM)
Solver choice depends on:

I is the system sparse or dense? how sparse?
I symmetric? positive definite? explicitly available?
I properties of the matrix? what do I know about the

eigenvalues?
I do I have a good preconditioner?
I do I need the exact solution or can I allow for ε-errors?
I what computing resources do I have? can I store the matrix?
I how fast/often do I need to solve systems?

26 / 27

Reading/Sources

Why Multigrid Methods are so efficient:
http://www.cs.technion.ac.il/people/irad/

online-publications/Yav06.pdf

27 / 27

http://www.cs.technion.ac.il/people/irad/online-publications/Yav06.pdf
http://www.cs.technion.ac.il/people/irad/online-publications/Yav06.pdf

Ma221 - Multigrid DemmelFall 2004

2D Poisson�s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =

4

-1

-1

-1

-1

Graph and �stencil�

Ma221 - Multigrid DemmelFall 2004

Algorithms for 2D/3D Poisson Equation with n unknowns

Algorithm 2D (n= N2) 3D (n=N3)
°  Dense LU n3 n3
°  Band LU n2 n7/3
°  Explicit Inv. n2 n2
°  Jacobi/GS n2 n2

°  Sparse LU n 3/2 n2
°  Conj.Grad. n 3/2 n 3/2
°  RB SOR n 3/2 n 3/2
°  FFT n*log n n*log n

°  Multigrid n n
°  Lower bound n n

Multigrid is much more general than FFT approach (many elliptic PDE)

Different approaches
Jacobi: M = Diagonal(A)
Gauss Seidel: M = LowerTriangular(A)
SOR & SSOR: Combination

Jacobi x = D-1(b + Ox)
Gauss Siedel x = L-1(B + Ux)
SOR x = (D+wL)-1(wb-[(w-1)D-wU)x)

Iterations
Jacobi: O(1/h)
SOR: O(1/h-1/2)

 1D problem

Eigenvectors

Error /eigenvectors

Error for high frequencies

Two-level scheme

Prolongation

Restriction

V-cycle

Multigrid

Full multigrid (O(N))

COARSE GRID

FINE GRID

Parallelizing multigrid
Regular grids
•  grid coarsening is trivial
•  grid partitioning is trivial
•  coloring can be constructed analytically
•  smoother

Unstructured grids/graphs
•  graph coarsening
Multigrid for generic matrices

Algebraic multigrid
Define coarse grid in terms of strengths of

connections
Use MIS to define nodes
No need to create new edges
Interpolation and restriction operations

based on the smooth error idea
Only requires matrix entries
Works for graph Laplacians

	Organization issues
	Summary of previous class
	Multigrid

