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Organization

Scheduling:
I Homework assignment #6 posted last week, due next Monday.
I How are your final projects coming along? Special office hours

for final project this week: Wednesday 1-2pm and Thursday
noon-1pm in office #1111. Come by!

Topics today:
I Partitioning and balancing: space filling curves
I Multigrid
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Partitioning and Load Balancing

Thanks to Marsha Berger for letting me use many of her slides. Thanks
to the Schloegel, Karypis and Kumar survey paper and the Zoltan

website for many of these slides and pictures.

5 / 27



Partitioning

I Decompose computation into tasks to equi-distribute the data
and work, minimize processor idle time.
applies to grid points, elements, matrix rows, particles, . . .

I Map to processors to keep interprocessor communication low.
communication to computation ratio comes from both the
partitioning and the algorithm.
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Partitioning
Data decomposition + Owner computes rule:

I Data distributed among the processors
I Data distribution defines work assignment
I Owner performs all computations on its data.
I Data dependencies for data items owned by different

processors incur communication
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Partitioning

I Static - all information available before computation starts

use off-line algorithms to prepare before execution time; run as
pre-processor, can be serial, can be slow and expensive, starts.

I Dynamic - information not known until runtime, work changes
during computation (e.g. adaptive methods), or locality of
objects change (e.g. particles move)

use on-line algorithms to make decisions mid-execution; must
run side-by-side with application, should be parallel, fast,
scalable. Incremental algorithm preferred (small changes in
input result in small changes in partitions)

will look at some geometric methods, graph-based methods, spectral
methods, multilevel methods, diffusion-based balancing,...
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Recursive Coordinate Bisection

Divide work into two equal parts using cutting plane orthogonal to
coordinate axis For good aspect ratios cut in longest dimension.

1st cut 

2nd 

2nd 

3rd 

3rd 3rd 

3rd 

Geometric Partitioning 

Applications of Geometric Methods 

Parallel Volume Rendering 

Crash Simulations 
and Contact Detection 

Adaptive Mesh Refinement 
Particle Simulations 

Can generalize to k-way partitions. Finding optimal partitions is
NP hard. (There are optimality results for a class of graphs as a
graph partitioning problem.)
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Recursive Coordinate Bisection

+ Conceptually simple, easy to implement, fast.
+ Regular subdomains, easy to describe
– Need coordinates of mesh points/particles.
– No control of communication costs.
– Can generate disconnected subdomains
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Recursive Coordinate Bisection

Implicitly incremental - small changes in data result in small
movement of cuts
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Recursive Inertial Bisection

For domains not oriented along coordinate axes can do better if
account for the angle of orientation of the mesh.

Use bisection line orthogonal to principal inertial axis (treat mesh
elements as point masses). Project centers-of-mass onto this axis;
bisect this ordered list. Typically gives smaller subdomain
boundary.
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Space-filling Curves
Linearly order a multidimensional mesh (nested hierarchically,
preserves locality)

Peano-Hilbert ordering

Morton ordering
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Space-filling Curves

Easily extends to adaptively refined meshes
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Space-filling Curves

1 25 50 75 100

Partition work into equal chunks.
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Space-filling Curves

+ Generalizes to uneven work loads - incorporate weights.
+ Dynamic on-the-fly partitioning for any number of nodes.
+ Good for cache performance
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Space-filling Curves

– Red region has more communication - not compact
– Need coordinates
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Space-filling Curves

Generalizes to other non-finite difference problems, e.g. particle
methods, patch-based adaptive mesh refinement, smooth particle
hydro.,
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Space-filling Curves

Implicitly incremental - small changes in data results in small
movement of cuts in linear ordering
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Morton Ordering

Computing Morton Indedx:
I convert coordinate to integers
I interleave the bits to generate a new integer
I works for arbitrary dimension (1D, 2D, 3D, 4D, ...)
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Application to N-body codes

References
I H. Sundar, R.S. Sampath,

G. Biros - Bottom Up
Construction and 2:1
Balance Refinement of
Linear Octrees in Parallel

I M.S.Warren and J.K.Salmon
- A Parallel HashedOct-Tree
N-Body Algorithm
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Application to N-body codes

Parallel Tree Construction
I compute Morton Ids of

particles;
I parallel sort and partition

across processes
I construct local tree on each

process
I adjust for overlapping tree

nodes at process boundaries.
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Application to N-body codes

Communication
I all processes store the

starting Morton IDs of each
partition

I to fetch a data element with
given coordinates, we can
determine the process ID to
communicate with using a
binary search in the list of
starting Morton IDs
(O(log p) cost).
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Visualization

I Useful for interpreting results.
I Can also be helpful for debugging!

Software
I Paraview
I Visit
I TecPlot
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Visualization ToolKit (VTK) File Format

Reference: The VTK User’s Guide

Simple Text Format
XML Format
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VTK Cell Types

Examples: https://github.com/NYU-HPC19/lecture13
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How solve large linear systems?

Many linear solvers are available: factorization-based solvers (LU,
Choleski), fast direct solvers (for specific problems), Krylov solvers
(CG, MINRES, GMRES,. . . ), optimal complexity (O(n)) solvers
for certain problems (multigrid, FMM)
Solver choice depends on:

I is the system sparse or dense? how sparse?
I symmetric? positive definite? explicitly available?
I properties of the matrix? what do I know about the

eigenvalues?
I do I have a good preconditioner?
I do I need the exact solution or can I allow for ε-errors?
I what computing resources do I have? can I store the matrix?
I how fast/often do I need to solve systems?
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Reading/Sources

Why Multigrid Methods are so efficient:
http://www.cs.technion.ac.il/people/irad/

online-publications/Yav06.pdf
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Ma221 - Multigrid DemmelFall 2004 

2D Poisson�s equation 

° Similar to the 1D case, but the matrix T is now 

° 3D is analogous 
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Graph and �stencil� 



Ma221 - Multigrid DemmelFall 2004 

Algorithms for 2D/3D Poisson Equation with n unknowns 

Algorithm  2D (n= N2)  3D (n=N3)   
°  Dense LU  n3   n3    
°  Band LU  n2   n7/3    
°  Explicit Inv.  n2    n2  
°  Jacobi/GS  n2   n2  

°  Sparse LU  n 3/2   n2      
°  Conj.Grad.  n 3/2   n 3/2   
°  RB SOR  n 3/2   n 3/2      
°  FFT   n*log n   n*log n    

°  Multigrid  n   n    
°  Lower bound  n   n    

Multigrid is much more general than FFT approach (many elliptic PDE) 



Different approaches 
Jacobi:   M = Diagonal(A) 
Gauss Seidel: M = LowerTriangular(A) 
SOR & SSOR: Combination 
 
Jacobi              x = D-1(b + Ox) 
Gauss Siedel   x = L-1(B + Ux) 
SOR                 x = (D+wL)-1(wb-[(w-1)D-wU)x) 

 
Iterations 
Jacobi: O(1/h) 
SOR: O(1/h-1/2) 



 1D problem 



Eigenvectors 



Error /eigenvectors 



Error for high frequencies 



Two-level scheme 



Prolongation 



Restriction 



V-cycle 



Multigrid 



Full multigrid (O(N)) 

COARSE GRID 

FINE GRID 



Parallelizing multigrid 
Regular grids 
•  grid coarsening is trivial 
•  grid partitioning is trivial 
•  coloring can be constructed analytically 
•  smoother  
 
Unstructured grids/graphs 
•  graph coarsening 
Multigrid for generic matrices 



Algebraic multigrid 
Define coarse grid in terms of strengths of 

connections 
Use MIS to define nodes 
No need to create new edges 
Interpolation and restriction operations 

based on the smooth error idea 
Only requires matrix entries 
Works for graph Laplacians 
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