Advanced Topics in Numerical Analysis: High Performance Computing
 N -body problems and FMM

Georg Stadler, Dhairya Malhotra Courant Institute, NYU

Spring 2019, Monday, 5:10-7:00PM, WWH \#1302

May 13, 2019

Outline

Organization issues

Sample sort remark

N-body problems and FMM

Organization

Scheduling:

- Homework assignment \#6 due Tonight.
- Let us know if you want to meet to discuss projects

Topics today:

- Summary of last class
- Fast Multipole Method
- Class evaluation

Organization

Final projects:

- Project presentation May 20/21. Sign up for your time slot (see google docs link on Slack)
- Each group is expected to present 10 minutes (8 slides), and summarize their work in a final report.
- Final report must acknowledge sources of code and outside help. It also must include a short statement of who did what in the team. Don't plagarize!

Organization

Final projects:

- Please focus presentation/project description on HPC aspects:
- What algorithm, what parallelization and why?
- Flop rate, main computational kernel, memory access,...
- Scalability (weak/strong). Please run your code not only on your Laptop but on a "real" computing device (Prince, crunchy).
- What's limits solving your problem faster, solving larger problems? Communication? Memory access? Amdahl's law?
- Your personal experience/What have you learned?
- Please put your code in a repository; We would like to post a link to your code and your final reports.

Outline

Organization issues

Sample sort remark

N-body problems and FMM

Sample Sort

Pick (p-1) local samples:
local_sample $[i]=A\left[(i+1) N / p^{2}\right] \quad i=0, \cdots, p-2$
Gather samples on root and sort:
sample $\longleftarrow \operatorname{sort}(\mathrm{MPI}$ _Gather(local_sample))
Pick (p-1) splitters:
$s_{i}=\operatorname{sample}[(i+1)(p-1)] \quad i=0, \cdots, p-2$
\# of elements $<s_{i}$
$\Longrightarrow[(p-1)(i+1)+1] \frac{N}{p^{2}} \quad$ (at least)
\# of elements $>s_{i+1}$
$\Longrightarrow[p(p-1)-(p-1)(i+2)] \frac{N}{p^{2}} \quad$ (at least)
\# of elements between s_{i} and s_{i+1}

$$
\begin{aligned}
& \Longrightarrow \quad N-[(p-1)(i+1)+1+p(p-1)-(p-1)(i+2)] \frac{N}{p^{2}} \\
& \quad<2 N / p
\end{aligned}
$$

Outline

Organization issues

Sample sort remark

N -body problems and FMM

N-Body Problems

$$
u_{i}=\sum_{j=1}^{N} G\left(x_{i}-y_{j}\right) f_{j} \quad \text { for all } \mathrm{i}
$$

Applications:

- Cosmological simulations (Millennium simulation, Bolshoi simulation)
- Electromagnetic, acoustic scattering (radars, ultrasound)
- Fluid dynamics (Stokes flow, voretex methods)
- Machine learning (Kernel density estimation)

N-Body Problem

$$
\begin{array}{rlrl}
\begin{array}{l}
\text { Compute } \\
\text { Gravitational } \\
\text { potential }
\end{array} & =u_{i} & =\sum_{j=1}^{N_{s}} G\left(y_{j}-x_{i}\right) f_{j} & \text { for all } i=1 \text { to } N_{T} \\
& =\sum_{j} G_{i j} f_{j} & \text { where } G(r)=\frac{1}{4 \pi / r l}
\end{array}
$$

N_{S} sources
N_{T} targets

$$
\text { cost }=O\left(N_{s} N_{T}\right)
$$

Idea: center of mass approximation
center of mass approximation $\Rightarrow f_{c}=\sum_{j} f_{j}$
monopole or first order
\rightarrow higher order: dipole, quadrupole, ..., multipole.

$$
\left.\begin{array}{rl}
\Rightarrow f_{c} & =\sum_{j} f_{j} \\
y_{c} & =\frac{\sum_{j} f_{j} y_{j}}{f_{c}}
\end{array}\right\} O\left(N_{s}\right)
$$

$$
\text { cost }=O\left(N_{S}+N_{T}\right)
$$

works only when sources and targets are well-separated

Idea2: apply center of mass approximation hierarchically
Step 0: Build a tree such that the \# of points per leaf is bounded.
Step 1:
compute center of mass for each leaf box.

Step 2:
compute center of mass for non-leaf boxes from the center of mass of its children.

$$
\text { cost }=O\left(N_{s}\right)
$$

Idea2: apply center of mass approximation hierarchically
Step 0: Build a tree such that the \# of points per leaf is bounded.
Step 1:
compute center of: mass for each leaf box.

Step 2:
compute center of mass for non-leaf boxes from the center of mass of its children.

$$
\text { cost }=O\left(N_{s}\right)
$$

Idea2: apply center of mass approximation hierarchically
Step $3:$
Evaluate target potentials using the coarsest level center of moss that is well-separated. $\binom{$ At most 27 interactions) }{ in each level. } $\cos t=N_{T} \times O\left(27 \log N_{S}\right)$ Step 4.
Evaluate remaining interactions directly.

$$
\cos t=N_{T} \times O(1)
$$

Barnes \& Hut: Tree Code (1986)

Idea2: apply center of mass approximation hierarchically
Step 3:
Evaluate target potentials using the coarsest level center of mass that is well-separated. $\binom{$ At most 27 interactions }{ in each level. } $\cos t=N_{T} \times O\left(27 \log N_{S}\right)$ Step 4.
Evaluate remaining
interactions directly.

Total cost $=O(N \operatorname{bg} N)$ Barnes \& Hut: Tree Code (1986)

Idea3: local expansions

Idea3: local expansions (hierarchically)
Step 0: Build tree and multipole expansions (center of mass) for all leaf \& non-leaf nodes. (Upward-pass)
Step 1: starting from the coarsest level in the tree, compute local expansions for the multipole expansions of well-separated nodes.
Step 2: propagate local expansions from parents to the children at the next finer level in the tree (local-to-local or $\angle 2 T$ operation)
Repeat step for the finer level.

Idea4: higher order expansions

$$
\begin{aligned}
& \rightarrow \text { Spherical harmonics } \\
& u(r) \approx \sum_{n=0}^{k} \sum_{m=-n}^{n} \underbrace{\frac{Y_{n}^{m}(\theta, \phi)}{r^{n+1}}}_{\text {Basis vectors }} M_{n}^{m} \quad\binom{\text { Cheng, Greengard, }}{\text { Rokhlin-1999 }} \\
& u(r)=\sum_{k} \underbrace{G\left(r-y_{k}\right)}_{\text {Basis vectors }} M_{k}\left(\begin{array}{c}
\text { Kernel Independent FMM } \\
\text { Ying, Biros, Zorin - } 2004 \\
\text { parallel implementation prfmm.org }
\end{array}\right)
\end{aligned}
$$

Directional FMM - ying, Engquist
Askit FMM - March, Yu, Biros et. al.

KIFMM Upward Pass

Multipole Expansion: S2M, M2M

- Source to Multipole: from the source points compute multipole expansion of leaf nodes
- Multipole to Multipole: from the multipole expansion of children compute multipole expansion of parent node

KIFMM Upward Pass

Multipole Expansion: S2M, M2M

- Source to Multipole: from the source points compute multipole expansion of leaf nodes
- Multipole to Multipole: from the multipole expansion of children compute multipole expansion of parent node

KIFMM Multipole Expansion

convergence with number of multipole points (m^{2} in 3D)

Spectral convergence with multipole order m

KIFMM Downward Pass

Far Interactions: M2L + L2L

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

KIFMM Downward Pass

Far Interactions: M2L + L2L

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

KIFMM Downward Pass

Far Interactions: M2L + L2L

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

KIFMM Downward Pass

Far Interactions: M2L + L2L

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

KIFMM Downward Pass

Target Potential: L2T + S2T

At leaf nodes,

- Local to Target: evaluate local expansion at target points
- Source to Target: add near interactions from neighbouring leaf nodes and itself using direct sum

KIFMM Downward Pass

Target Potential: L2T + S2T

At leaf nodes,

- Local to Target: evaluate local expansion at target points
- Source to Target: add near interactions from neighbouring leaf nodes and itself using direct sum

FMM Summary

- Upward pass:
- S2M: build multipole expansions for leaf nodes.
- M2M: build multipole expansions for non-leaf nodes.
- Downward pass:
- M2L: build local expansions from multipole expansions on the same level
- L2L: add local contribution from parent's local expansion
- L2T: evaluate local expansion at target points of leaf nodes
- S2T: compute remaining near interactions directly

- S: "Source"
- T: "Target"
- M: "Multipole"
- L: "Local"

Fast Multipole Method (References)

- Lexing Ying's talk on FMM
- A short course on fast multipole methods

