Advanced Topics in Numerical Analysis: High Performance Computing

N-body problems and FMM

Georg Stadler, Dhairya Malhotra Courant Institute, NYU

Spring 2019, Monday, 5:10-7:00PM, WWH #1302

May 13, 2019

Outline

Organization issues

Sample sort remark

N-body problems and FMM

Organization

Scheduling:

- ► Homework assignment #6 due Tonight.
- Let us know if you want to meet to discuss projects

Topics today:

- Summary of last class
- Fast Multipole Method
- Class evaluation

Organization

Final projects:

- Project presentation May 20/21. Sign up for your time slot (see google docs link on Slack)
- Each group is expected to present 10 minutes (8 slides), and summarize their work in a final report.
- Final report must acknowledge sources of code and outside help. It also must include a short statement of who did what in the team. Don't plagarize!

Organization

Final projects:

- Please focus presentation/project description on HPC aspects:
 - What algorithm, what parallelization and why?
 - ► Flop rate, main computational kernel, memory access,...
 - Scalability (weak/strong). Please run your code not only on your Laptop but on a "real" computing device (Prince, crunchy).
 - What's limits solving your problem faster, solving larger problems? Communication? Memory access? Amdahl's law?
 - Your personal experience/What have you learned?
 - Please put your code in a repository; We would like to post a link to your code and your final reports.

Outline

Organization issues

Sample sort remark

N-body problems and FMM

Sample Sort

Pick (p-1) local samples: $local_sample[i] = A[(i+1)N/p^2]$ $i = 0, \dots, p-2$

Gather samples on root and sort: $sample \leftarrow sort(MPI_Gather(local_sample))$

Pick (p-1) splitters: $s_i = sample[(i+1)(p-1)]$ $i = 0, \dots, p-2$

of elements $< s_i$ $\implies [(p-1)(i+1)+1] \frac{N}{p^2}$ (at least)

of elements $> s_{i+1}$ $\implies [p(p-1) - (p-1)(i+2)] \frac{N}{p^2}$ (at least)

of elements between s_i and s_{i+1} $\implies N - [(p-1)(i+1) + 1 + p(p-1) - (p-1)(i+2)] \frac{N}{p^2}$ < 2N/p

Outline

Organization issues

Sample sort remark

N-body problems and FMM

N-Body Problems

$$u_i = \sum_{j=1}^N G(x_i - y_j) f_j$$
 for all i

Applications:

- Cosmological simulations (Millennium simulation, Bolshoi simulation)
- Electromagnetic, acoustic scattering (radars, ultrasound)
- Fluid dynamics (Stokes flow, voretex methods)
- Machine learning (Kernel density estimation)

 $Cost = O(N_s N_T)$

Idea2: apply center of mass approximation hierarchically Step $\underline{0}$: Build a tree such that the # of points per leaf is bounded. Step1: 2. × compute center of ĸ mass for each leaf box. K -X X Step 2: x **K** compute center of mass for non-leaf × . . boxes from the × center of mass of × .X. 2 × × its children. .× × × - × × - $Cost = O(N_s)$ x × × . ×

 $Cost = O(N_s)$

Idea2: apply center of mass approximation hierarchically

Total cost=O(NbgN) Barnes & Hut: Tree Code (1986)

Idea2: apply center of mass approximation hierarchically

Step3: Evaluate target potentials using the coarsest level center of mass that is well-separated. (At most 27 interactions) in each level. $cost = N_T \times O(27 \log N_S)$ Step 4: Evaluate remaining interactions directly. $cost = \check{N}_T \times O(1)$

Total cost=O(NbgN) Barnes & Hut: Tree Code (1986)

Idea3: local expansions (hierarchically)

<u>Step</u>D: Build tree and multipole expansions (center of mass) for all leaf & non-leaf nodes. (Upward - pass)

<u>Step1</u>: starting from the coarsest level in the tree, compute local expansions fom the multipole expansions of well-separated nodes.

<u>Step2</u>: propagate local expansions from parents to the children at the next finer level in the tree (local-to-local or 12T operation) Repeat step1 for the finer level.

<u>Idea4:</u> higher order expansions

KIFMM Upward Pass

Multipole Expansion: S2M, M2M

- Source to Multipole: from the source points compute multipole expansion of leaf nodes
- Multipole to Multipole: from the multipole expansion of children compute multipole expansion of parent node

KIFMM Upward Pass

Multipole Expansion: S2M, M2M

- Source to Multipole: from the source points compute multipole expansion of leaf nodes
- Multipole to Multipole: from the multipole expansion of children compute multipole expansion of parent node

KIFMM Multipole Expansion

convergence with number of multipole points (m^2 in 3D)

Spectral convergence with multipole order m

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

- Multipole-to-Local: compute local expansion from multipole expansions of well separated nodes
- Local-to-Local: add contributions from the parent's local expansion

Target Potential: L2T + S2T

At leaf nodes,

- Local to Target: evaluate local expansion at target points
- Source to Target: add near interactions from neighbouring leaf nodes and itself using direct sum

Target Potential: L2T + S2T

At leaf nodes,

- Local to Target: evaluate local expansion at target points
- Source to Target: add near interactions from neighbouring leaf nodes and itself using direct sum

FMM Summary

- Upward pass:
 - ► S2M: build multipole expansions for leaf nodes.
 - M2M: build multipole expansions for non-leaf nodes.
- Downward pass:
 - M2L: build local expansions from multipole expansions on the same level
 - L2L: add local contribution from parent's local expansion
 - L2T: evaluate local expansion at target points of leaf nodes
 - S2T: compute remaining near interactions directly

Fast Multipole Method (References)

- Lexing Ying's talk on FMM
- ► A short course on fast multipole methods