Advanced Topics in Numerical Analysis:

High Performance Computing

Memory hierarchies

Georg Stadler Dhairya Malhotra
Courant Institute, NYU
stadler@cims.nyu.edu dm43400@nyu.edu

Spring 2019, Monday, 5:10-7:00PM, WWH #1302

Feb 4, 2019

/27

stadler@cims.nyu.edu
dm4340@nyu.edu

Outline

Organization issues

/27

Organization issues

> If you're not in the class’ Slack group yet, please let us know.

/27

https://nyu-hpc19.github.io/

Organization issues

> If you're not in the class’ Slack group yet, please let us know.

» Homework assignment #1 is posted and due next week.
» Part I: Find examples for HPC; Hand in a PDF separately, we
will post link to folder where you can put this file—everybody

will have access to it.
» Part II: Simple single-core examples. We'll improve these over

the semester.

27

https://nyu-hpc19.github.io/

Organization issues

v

If you're not in the class’ Slack group yet, please let us know.

v

Homework assignment #1 is posted and due next week.

» Part I: Find examples for HPC; Hand in a PDF separately, we
will post link to folder where you can put this file—everybody
will have access to it.

» Part II: Simple single-core examples. We'll improve these over
the semester.

v

Public course website contains an outline (which might
change a bit): https://nyu-hpcl9.github.io/

No class on Feb 25!

v

v

Questions?

27

https://nyu-hpc19.github.io/

Plan for today

v

Summary of last week’s material (Moore's law, multicore,
HPC overview)

v

Finish example problems in OpenMP and MPI

v

Memory hierarchies (caches), basic performance models,
single core performance

v

Code examples; Tools: valgrind and cachegrind

27

Outline

Summary of last class

/27

Moore's law today

>
| 4
| 4
| 4

Frequency/clock speed stopped growing in ~ 2004

Number of cores per CPU

Moore's law still holds

Energy use ~bounded

10000000

1000000

1000

100000 T—

10000 ———

* Transistors (Thousands)
= Frequency (MHz)

A Power (W)

® Cores

100

10

1975 1980 1985 1990 1995 2000 2005

2010

Source: CS Department, UC Berkeley.

/27

Parallel computing C high-performance computing

» All major vendors produce multicore chips—need to think
differently about applications.

» How well can applications and algorithms exploit parallelism?

» Memory density (DRAM) grows at slower rate.
Loading/writing to memory is slow (O(100) clock cycles)

» Top500 list: leading machines have > 107 processor cores,

and often two different kinds of compute chips (CPUs and
some kind of accelerators (e.g., GPUs)).

27

Do we really need larger and faster?

Simulation has become the third pillar of Science:

[

experiment]

simulation

HPC computing used in: weather prediction, climate modeling,
drug design, astrophysics, earthquake modeling, semiconductor
design, crash test simulations, financial modeling, ...

27

Basic CS terms recalled

>

compiler: translates human code into machine language

» CPU /processor: central processing unit caries out instructions

of a computer program, i.e., arithmetic/logical operations,
input/output

core: individual processing unit in a CPU, “multicore” CPU;
will sometimes use “processors” in a sloppy way, and actually
mean “cores”

clock rate/frequency: indicator of speed in which instructions
are performed

floating point operation: multiplication add of two floating
point numbers, usually double precision (64 bit, about 16
digits)

» peak performance: fastest theoretical flop/s

» sustained performance: flop/s in actual computation
» memory hierarchy: large memories (RAM/disc/solid state) are

slow; fast memories (L1/L2/L3 cache) are small

27

Outline

Memory hierarchies (single CPU)

10/27

Flop/s versus Mop/s

For many practical applications, memory access is the bottleneck,
not floating point operations.

100,000

10,000

Processor

Performance

Memory

1980 1985 1990 1995 2000 2005 2010
Year
2007 Elsete, nc. Al ights resorved.

Development of memory versus processor performance.

» Most applications run at < 10% of the theoretical peak
performance.

» Mostly a single core issue; on parallel computers, things
become even more difficult.

11 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.
» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.

» This is a single processor issue, but it's even more important
on parallel computers.

12 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.
» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.
» This is a single processor issue, but it's even more important
on parallel computers.
More CS terms:

> latency:

12 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.
» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.
» This is a single processor issue, but it's even more important
on parallel computers.
More CS terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

12 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.
> Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.
» This is a single processor issue, but it's even more important
on parallel computers.
More CS terms:
» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth:

12 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

> Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.
» This is a single processor issue, but it's even more important
on parallel computers.
More CS terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

12 /27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.

» This is a single processor issue, but it's even more important
on parallel computers.

More CS terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 /27

Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

THE
MEMORY HIERARCHY

sueerFast |

SUPER EXPENSIVE |

fore) TINY CAPACTTY |
RECISTER |

CPU CACHE
LEVEL 1 (L1) CACHE FASTER |
LEVEL 2 (L7) CACHE EXPENSIVE |
LEVEL 3 ((3) CACHE SMALL CAPACITY |
FAST |

PRICED REASONRBLY |

AVERAGE CAPAC]TBJ

AVERAGE SPEED |
PRICED REASONABLY |
AVERAGE CAPACITH

| MECHANICAL
HARD DRIVES

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)

13 /27

Memory hierarchies

Levels of Memory Hierarchy

Memory

CPU

. Memory
Register Level 1 Level 2 Level 3 Memory
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB
Speed: 300 ps ins 3-10ns 10-20ns 50-100 ns

(a) Memory hierarchy for server

Memory

CPU

Memo
X
Register Level 1 Level 2 Memory
reference Cache Cache reference
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB
Speed: 500 ps 2ns 10-20 ns 50-100 ns

(b) Memory hierarchy for a personal mobile device

Copyright © 2012, Elsevier Inc. All rights reserved.

1/0 bus

Disk storage

Disk
memory
reference

4-16TB
5-10 ms

Storage

FLASH
memory
reference

4-8 GB
25-50 us

AyotessiH Aiows| Jo s|ona]

14 /27

Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

15 /27

Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
More CS terms:

» cache-hit:

15 /27

Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
More CS terms:
» cache-hit: required data is available in cache = fast access

15 /27

Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
More CS terms:
» cache-hit: required data is available in cache = fast access

» cache-miss:

15 /27

Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
More CS terms:
» cache-hit: required data is available in cache = fast access

» cache-miss: required data is not in cache and must be loaded
from main memory (RAM) = slow access

15 /27

Memory hierarchy

Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory
2. All data is initially in slow memory
3. Simplifications:
> lIgnore that memory access and arithmetic operations can
happen at the same time
» assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q= i, where f...#flops,m ... #slow memop.
m

Actual compute time:

1
Fte + mby = ftp(1+ t@—),
f q

where 1 is time per flop, and #,, the time per slow memory access.

Computational intensity should be as large as possible.

16

27

Memory hierarchy

Example: Computational intensity for Matrix-matrix multiply

» Matrix-vector multiplication: x,y € R", A € R™*"
y=y+ Ax

flops: ~ 2n2, memory read /write: ~ 3n + n?
Computational intensity: ~2 (memory-bound!)

» Matrix-matrix multiplication: A, B,C € R™*"
C=C+AB

flops: ~ 2n3, memory read/write: ~ 3n? 4+ n?
Computational intensity: ~2 (memory-bound!)

17 /27

Memory hierarchy

Example: Computational intensity for Matrix-matrix multiply

Can this be improved using fast memory? Yes! (Sketch—will be
part of the next homework).

» Matrix-matrix multiplication with tiling: A, B,C € R"*"
C=C+AB

We'll consider N x N blocks of size b x b of the matrices, i.e.,
b=n/N.

» N3 block reads of A, B, 2N?2 reads/writes of C;

» memory access: (2N?3 +2N?)b? ~ 2Nn? + 2n?

» Computational intensity g ~ b!

» Gives a much higher computational intensity, much faster!

18 /27

Memory hierarchy
Example: Matrix-matrix multiply

Comparison between naive and blocked optimized matrix-matrix
multiplication for different matrix sizes.

Nx N Matrix Mullply U ia—1/170]

\
| /\/ | e o1
IV ’Af\A\L{ N“i o
VAV —
|
i l
!
L i, 3-nestad boops (Sun o, full 1)

Comparison between optimized and naive matrix-matrix multiplication on old hardware with peak of 330MFlops.
Source: J. Demmel, Berkeley

BLAS: Optimized Basic Linear Algebra Subprograms

27

Memory hierarchy

To summarize:

» Temporal and spatial locality is key for fast performance.

» Simple performance model: fast and slow memory; only
counts loads into fast memory; computational intensity should
be high.

» Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

> In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

https://github.com/NYU-HPC19/1lecture2

20 /27

https://github.com/NYU-HPC19/lecture2

Outline

Tools/commands

21/27

The module command (last week’s tool)

module list

module avail . ..

module load python/3.4
module unload texlive-2016
module whatis gcc-6.1.0

22/27

Valgrind and cachegrind (this week's tool)
Valgrind

> memory management tool and suite for debugging, also in
parallel

» profiles heap (not stack) memory access
» simulates a CPU in software
> running code with valgrind makes it slower by factor of 10-100

> not installed by default on only available on Mac OS; use for
MPI-parallel debugging on Mac limited

» Documentation: http://valgrind.org/docs/manual/

memcheck cachegrind callgrind

finds leaks cache profiler extension to
inval. mem. access sources of cache cachegrind
uninitialize mem. misses function call graph

incorrect mem. frees

23 /27

http://valgrind.org/docs/manual/

Valgrind and cachegrind

Usage (see examples):

Run with valgrind (no recompile necessary!)
valgrind --tool=memcheck [options] ./a.out [args]

Test examples for valgrind memcheck:

https://github.com/NYU-HPC19/1lecture2

24 /27

https://github.com/NYU-HPC19/lecture2

Valgrind and cachegrind

Run cachegrind profiler:
valgrind --tool=cachegrind [options] ./a.out [args]

Visualize results of cachegrind:
cg_annotate --auto=yes cachegrind.out**x*

To illustrate the use of cachegrind, we used the vector
multiplication problem:

https://github.com/NYU-HPC19/1lecture2

valgrind --tool=cachegrind
./inner-mem vec_size

25 /27

https://github.com/NYU-HPC19/lecture2

Bandwidth

— read
- — write :
— S— ——read+write |
~
m
o 107 T |
<= -)
+ L g_\ i
s | —\\ |
i \IM
10" | E
:HHH\ Lol Lol Lol Lol ! ;
10t 10> 10 10" 10°
array size (bytes) .

Latency

cycles

102

101

-

JHH‘ T T TTT T T TTTT T T TTTI T TTTTI T T TTT T T TTTT T \7
- —— sequential
- —— random-sequence

1

103 104

10> 10° 107
array size (bytes)

108

10

27 /27

	Organization issues
	Summary of last class
	Memory hierarchies (single CPU)
	Tools/commands

