
Advanced Topics in Numerical Analysis:
High Performance Computing

Memory hierarchies

Georg Stadler Dhairya Malhotra
Courant Institute, NYU

stadler@cims.nyu.edu dm4340@nyu.edu

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

Feb 4, 2019

1 / 27

stadler@cims.nyu.edu
dm4340@nyu.edu

Outline

Organization issues

Summary of last class

Memory hierarchies (single CPU)

Tools/commands

2 / 27

Organization issues

I If you’re not in the class’ Slack group yet, please let us know.

I Homework assignment #1 is posted and due next week.
I Part I: Find examples for HPC; Hand in a PDF separately, we

will post link to folder where you can put this file–everybody
will have access to it.

I Part II: Simple single-core examples. We’ll improve these over
the semester.

I Public course website contains an outline (which might
change a bit): https://nyu-hpc19.github.io/

I No class on Feb 25!

I Questions?

3 / 27

https://nyu-hpc19.github.io/

Organization issues

I If you’re not in the class’ Slack group yet, please let us know.

I Homework assignment #1 is posted and due next week.
I Part I: Find examples for HPC; Hand in a PDF separately, we

will post link to folder where you can put this file–everybody
will have access to it.

I Part II: Simple single-core examples. We’ll improve these over
the semester.

I Public course website contains an outline (which might
change a bit): https://nyu-hpc19.github.io/

I No class on Feb 25!

I Questions?

3 / 27

https://nyu-hpc19.github.io/

Organization issues

I If you’re not in the class’ Slack group yet, please let us know.

I Homework assignment #1 is posted and due next week.
I Part I: Find examples for HPC; Hand in a PDF separately, we

will post link to folder where you can put this file–everybody
will have access to it.

I Part II: Simple single-core examples. We’ll improve these over
the semester.

I Public course website contains an outline (which might
change a bit): https://nyu-hpc19.github.io/

I No class on Feb 25!

I Questions?

3 / 27

https://nyu-hpc19.github.io/

Plan for today

I Summary of last week’s material (Moore’s law, multicore,
HPC overview)

I Finish example problems in OpenMP and MPI

I Memory hierarchies (caches), basic performance models,
single core performance

I Code examples; Tools: valgrind and cachegrind

4 / 27

Outline

Organization issues

Summary of last class

Memory hierarchies (single CPU)

Tools/commands

5 / 27

Moore’s law today
I Frequency/clock speed stopped growing in ∼ 2004

I Number of cores per CPU
I Moore’s law still holds
I Energy use ∼bounded

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

Source: CS Department, UC Berkeley.

6 / 27

Parallel computing ⊂ high-performance computing

I All major vendors produce multicore chips—need to think
differently about applications.

I How well can applications and algorithms exploit parallelism?

I Memory density (DRAM) grows at slower rate.
Loading/writing to memory is slow (O(100) clock cycles)

I Top500 list: leading machines have > 107 processor cores,
and often two different kinds of compute chips (CPUs and
some kind of accelerators (e.g., GPUs)).

7 / 27

Do we really need larger and faster?

Simulation has become the third pillar of Science:

theory experiment

simulation

HPC computing used in: weather prediction, climate modeling,
drug design, astrophysics, earthquake modeling, semiconductor
design, crash test simulations, financial modeling, . . .

8 / 27

Basic CS terms recalled

I compiler: translates human code into machine language
I CPU/processor: central processing unit caries out instructions

of a computer program, i.e., arithmetic/logical operations,
input/output

I core: individual processing unit in a CPU, “multicore” CPU;
will sometimes use “processors” in a sloppy way, and actually
mean “cores”

I clock rate/frequency: indicator of speed in which instructions
are performed

I floating point operation: multiplication add of two floating
point numbers, usually double precision (64 bit, about 16
digits)

I peak performance: fastest theoretical flop/s
I sustained performance: flop/s in actual computation
I memory hierarchy: large memories (RAM/disc/solid state) are

slow; fast memories (L1/L2/L3 cache) are small

9 / 27

Outline

Organization issues

Summary of last class

Memory hierarchies (single CPU)

Tools/commands

10 / 27

Flop/s versus Mop/s
For many practical applications, memory access is the bottleneck,
not floating point operations.

Development of memory versus processor performance.

I Most applications run at < 10% of the theoretical peak
performance.

I Mostly a single core issue; on parallel computers, things
become even more difficult.

11 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency:

time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth:

rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

I This is a single processor issue, but it’s even more important
on parallel computers.

More CS terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.

12 / 27

Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)

13 / 27

Memory hierarchies

Copyright © 2012, Elsevier Inc. All rights reserved.

Levels of Memory Hierarchy
Levels of M

em
ory H

ierarchy

14 / 27

Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

15 / 27

Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit:

required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

15 / 27

Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

15 / 27

Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss:

required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

15 / 27

Memory hierarchies
Decreasing memory latency

I Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

I Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

I Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)

More CS terms:

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

15 / 27

Memory hierarchy
Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory

2. All data is initially in slow memory
3. Simplifications:

I Ignore that memory access and arithmetic operations can
happen at the same time

I assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q =
f

m
, where f . . .#flops,m . . .#slow memop.

Actual compute time:

ftf +mtm = ftf (1 +
tm
tf

1

q
),

where tf is time per flop, and tm the time per slow memory access.
Computational intensity should be as large as possible.

16 / 27

Memory hierarchy
Example: Computational intensity for Matrix-matrix multiply

I Matrix-vector multiplication: x,y ∈ Rn, A ∈ Rn×n

y = y +Ax

flops: ∼ 2n2, memory read/write: ∼ 3n+ n2

Computational intensity: ∼2 (memory-bound!)

I Matrix-matrix multiplication: A,B,C ∈ Rn×n

C = C +AB

flops: ∼ 2n3, memory read/write: ∼ 3n2 + n3

Computational intensity: ∼2 (memory-bound!)

17 / 27

Memory hierarchy
Example: Computational intensity for Matrix-matrix multiply

Can this be improved using fast memory? Yes! (Sketch—will be
part of the next homework).

I Matrix-matrix multiplication with tiling: A,B,C ∈ Rn×n

C = C +AB

We’ll consider N ×N blocks of size b× b of the matrices, i.e.,
b = n/N .

I N3 block reads of A,B; 2N2 reads/writes of C;
I memory access: (2N3 + 2N2)b2 ∼ 2Nn2 + 2n2

I Computational intensity q ∼ b!
I Gives a much higher computational intensity, much faster!

18 / 27

Memory hierarchy
Example: Matrix-matrix multiply

Comparison between naive and blocked optimized matrix-matrix
multiplication for different matrix sizes.

Comparison between optimized and naive matrix-matrix multiplication on old hardware with peak of 330MFlops.

Source: J. Demmel, Berkeley

BLAS: Optimized Basic Linear Algebra Subprograms
19 / 27

Memory hierarchy

To summarize:

I Temporal and spatial locality is key for fast performance.

I Simple performance model: fast and slow memory; only
counts loads into fast memory; computational intensity should
be high.

I Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

I In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

https://github.com/NYU-HPC19/lecture2

20 / 27

https://github.com/NYU-HPC19/lecture2

Outline

Organization issues

Summary of last class

Memory hierarchies (single CPU)

Tools/commands

21 / 27

The module command (last week’s tool)

module list
module avail . . .
module load python/3.4
module unload texlive-2016
module whatis gcc-6.1.0

22 / 27

Valgrind and cachegrind (this week’s tool)

Valgrind

I memory management tool and suite for debugging, also in
parallel

I profiles heap (not stack) memory access

I simulates a CPU in software

I running code with valgrind makes it slower by factor of 10-100

I not installed by default on only available on Mac OS; use for
MPI-parallel debugging on Mac limited

I Documentation: http://valgrind.org/docs/manual/

memcheck
finds leaks

inval. mem. access
uninitialize mem.

incorrect mem. frees

cachegrind
cache profiler

sources of cache
misses

callgrind
extension to
cachegrind

function call graph

23 / 27

http://valgrind.org/docs/manual/

Valgrind and cachegrind

Usage (see examples):

Run with valgrind (no recompile necessary!)
valgrind --tool=memcheck [options] ./a.out [args]

Test examples for valgrind memcheck:

https://github.com/NYU-HPC19/lecture2

24 / 27

https://github.com/NYU-HPC19/lecture2

Valgrind and cachegrind

Run cachegrind profiler:
valgrind --tool=cachegrind [options] ./a.out [args]

Visualize results of cachegrind:
cg annotate --auto=yes cachegrind.out***

To illustrate the use of cachegrind, we used the vector
multiplication problem:

https://github.com/NYU-HPC19/lecture2

valgrind --tool=cachegrind

./inner-mem vec size

25 / 27

https://github.com/NYU-HPC19/lecture2

Bandwidth

104 105 106 107 108

101

102

array size (bytes)

B
an

d
w

is
th

(G
B

/s
)

read
write

read+write

26 / 27

Latency

103 104 105 106 107 108 109

101

102

array size (bytes)

cy
cl

es
sequential

random-sequence

27 / 27

	Organization issues
	Summary of last class
	Memory hierarchies (single CPU)
	Tools/commands

