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> If you're not in the class’ Slack group yet, please let us know.

/27


https://nyu-hpc19.github.io/
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> If you're not in the class’ Slack group yet, please let us know.

» Homework assignment #1 is posted and due next week.
» Part I: Find examples for HPC; Hand in a PDF separately, we
will post link to folder where you can put this file—everybody

will have access to it.
» Part II: Simple single-core examples. We'll improve these over
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Organization issues

v

If you're not in the class’ Slack group yet, please let us know.

v

Homework assignment #1 is posted and due next week.

» Part I: Find examples for HPC; Hand in a PDF separately, we
will post link to folder where you can put this file—everybody
will have access to it.

» Part II: Simple single-core examples. We'll improve these over
the semester.

v

Public course website contains an outline (which might
change a bit): https://nyu-hpcl9.github.io/

No class on Feb 25!

v

v

Questions?
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Plan for today

v

Summary of last week’s material (Moore's law, multicore,
HPC overview)

v

Finish example problems in OpenMP and MPI

v

Memory hierarchies (caches), basic performance models,
single core performance

v

Code examples; Tools: valgrind and cachegrind
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Summary of last class
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Moore's law today
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Source: CS Department, UC Berkeley.
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Parallel computing C high-performance computing

» All major vendors produce multicore chips—need to think
differently about applications.

» How well can applications and algorithms exploit parallelism?

» Memory density (DRAM) grows at slower rate.
Loading/writing to memory is slow (O(100) clock cycles)

» Top500 list: leading machines have > 107 processor cores,

and often two different kinds of compute chips (CPUs and
some kind of accelerators (e.g., GPUs)).
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Do we really need larger and faster?

Simulation has become the third pillar of Science:

[

experiment]

simulation

HPC computing used in: weather prediction, climate modeling,
drug design, astrophysics, earthquake modeling, semiconductor
design, crash test simulations, financial modeling, ...
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Basic CS terms recalled

>

compiler: translates human code into machine language

» CPU /processor: central processing unit caries out instructions

of a computer program, i.e., arithmetic/logical operations,
input/output

core: individual processing unit in a CPU, “multicore” CPU;
will sometimes use “processors” in a sloppy way, and actually
mean “cores”

clock rate/frequency: indicator of speed in which instructions
are performed

floating point operation: multiplication add of two floating
point numbers, usually double precision (64 bit, about 16
digits)

» peak performance: fastest theoretical flop/s

» sustained performance: flop/s in actual computation
» memory hierarchy: large memories (RAM/disc/solid state) are

slow; fast memories (L1/L2/L3 cache) are small
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Memory hierarchies (single CPU)
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Flop/s versus Mop/s

For many practical applications, memory access is the bottleneck,
not floating point operations.
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Development of memory versus processor performance.

» Most applications run at < 10% of the theoretical peak
performance.

» Mostly a single core issue; on parallel computers, things
become even more difficult.
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Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.
» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.

» This is a single processor issue, but it's even more important
on parallel computers.
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Memory hierarchies

Computer architecture is complicated. We need a basic
performance model.

» Processor needs to be “fed” with data to work on.
» Memory access is slow; memory hierarchies help.

» This is a single processor issue, but it's even more important
on parallel computers.

More CS terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

Bandwidth grows faster than latency.
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Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

THE
MEMORY HIERARCHY
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CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)
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Memory hierarchies

Levels of Memory Hierarchy

Memory

CPU

. Memory
Register Level 1 Level 2 Level 3 Memory
reference Cache Cache Cache reference
reference  reference  reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB
Speed: 300 ps ins 3-10ns 10-20ns 50-100 ns

(a) Memory hierarchy for server

Memory
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Register Level 1 Level 2 Memory
reference Cache Cache reference
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Size: 500 bytes 64 KB 256 KB 256-512 MB
Speed: 500 ps 2ns 10-20 ns 50-100 ns

(b) Memory hierarchy for a personal mobile device

Copyright © 2012, Elsevier Inc. All rights reserved.
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Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
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Memory hierarchies

Decreasing memory latency

» Eliminate memory operations by saving data in fast memory
and reusing them, i.e., temporal locality: Access an item that
was previously accessed

» Explore bandwidth by moving a chunk of data into the fast
memory: spatial locality: Access data nearby previous accesses

» Overlap computation and memory access (pre-fetching; mostly
figured out by compiler, but the compiler often needs help)
More CS terms:
» cache-hit: required data is available in cache = fast access

» cache-miss: required data is not in cache and must be loaded
from main memory (RAM) = slow access
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Memory hierarchy

Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory
2. All data is initially in slow memory
3. Simplifications:
> lIgnore that memory access and arithmetic operations can
happen at the same time
» assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q= i, where f...#flops,m ... #slow memop.
m

Actual compute time:

1
Fte + mby = ftp(1+ t@—),
f q

where 1 is time per flop, and #,, the time per slow memory access.

Computational intensity should be as large as possible.

16
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Memory hierarchy

Example: Computational intensity for Matrix-matrix multiply

» Matrix-vector multiplication: x,y € R", A € R™*"
y=y+ Ax

flops: ~ 2n2, memory read /write: ~ 3n + n?
Computational intensity: ~2 (memory-bound!)

» Matrix-matrix multiplication: A, B,C € R™*"
C=C+AB

flops: ~ 2n3, memory read/write: ~ 3n? 4+ n?
Computational intensity: ~2 (memory-bound!)
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Memory hierarchy

Example: Computational intensity for Matrix-matrix multiply

Can this be improved using fast memory? Yes! (Sketch—will be
part of the next homework).

» Matrix-matrix multiplication with tiling: A, B,C € R"*"
C=C+AB

We'll consider N x N blocks of size b x b of the matrices, i.e.,
b=n/N.

» N3 block reads of A, B, 2N?2 reads/writes of C;

» memory access: (2N?3 +2N?)b? ~ 2Nn? + 2n?

» Computational intensity g ~ b!

» Gives a much higher computational intensity, much faster!
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Memory hierarchy
Example: Matrix-matrix multiply

Comparison between naive and blocked optimized matrix-matrix
multiplication for different matrix sizes.

Nx N Matrix Mullply U ia—1/170]

\
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VAV —
|
i l
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L i, 3-nestad boops (Sun o, full 1 )

Comparison between optimized and naive matrix-matrix multiplication on old hardware with peak of 330MFlops.
Source: J. Demmel, Berkeley

BLAS: Optimized Basic Linear Algebra Subprograms
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Memory hierarchy

To summarize:

» Temporal and spatial locality is key for fast performance.

» Simple performance model: fast and slow memory; only
counts loads into fast memory; computational intensity should
be high.

» Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

> In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

https://github.com/NYU-HPC19/1lecture2
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Tools/commands
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The module command (last week’s tool)

module list

module avail . ..

module load python/3.4
module unload texlive-2016
module whatis gcc-6.1.0
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Valgrind and cachegrind (this week's tool)
Valgrind

> memory management tool and suite for debugging, also in
parallel

» profiles heap (not stack) memory access
» simulates a CPU in software
> running code with valgrind makes it slower by factor of 10-100

> not installed by default on only available on Mac OS; use for
MPI-parallel debugging on Mac limited

» Documentation: http://valgrind.org/docs/manual/

memcheck cachegrind callgrind

finds leaks cache profiler extension to
inval. mem. access sources of cache cachegrind
uninitialize mem. misses function call graph

incorrect mem. frees
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http://valgrind.org/docs/manual/

Valgrind and cachegrind

Usage (see examples):

Run with valgrind (no recompile necessary!)
valgrind --tool=memcheck [options] ./a.out [args]

Test examples for valgrind memcheck:

https://github.com/NYU-HPC19/1lecture2
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Valgrind and cachegrind

Run cachegrind profiler:
valgrind --tool=cachegrind [options] ./a.out [args]

Visualize results of cachegrind:
cg_annotate --auto=yes cachegrind.out**x*

To illustrate the use of cachegrind, we used the vector
multiplication problem:

https://github.com/NYU-HPC19/1lecture2

valgrind --tool=cachegrind
./inner-mem vec_size
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Latency
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