
Advanced Topics in Numerical Analysis:
High Performance Computing

Sequential performance

Georg Stadler Dhairya Malhotra
Courant Institute, NYU

stadler@cims.nyu.edu dm4340@nyu.edu

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

Feb 11, 2019

1 / 22

stadler@cims.nyu.edu
dm4340@nyu.edu


Outline

Organization issues

Last class summary

Why writing fast code isn’t easy

2 / 22



Organization issues

I No class next week due to president’s day.

I Differently from what was announced last week, there will be
a class on Feb. 25. Our colleague Marsha Berger will
(thankfully) cover for us and introduce the distributed
memory model (OpenMP).

I There will be a new homework assignment (keep an eye on
the Slack #homework channel). Will be due on March 4.

I There will be a class similar to this (taught by Ben
Peherstorfer (Courant-CS)) a year from now.

3 / 22



Topics today

I Valgrind and cachegrid demonstration (see also the video!)

I Single core optimization: pipelining, vectorization

I Tool of the week: Git

I Parallel machines and programming models

4 / 22



Outline

Organization issues

Last class summary

Why writing fast code isn’t easy

5 / 22



Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)

6 / 22



Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

7 / 22



Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

7 / 22



Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

7 / 22



Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

7 / 22



Memory hierarchies

Important terms:

I latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

I bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

I cache-hit: required data is available in cache ⇒ fast access

I cache-miss: required data is not in cache and must be loaded
from main memory (RAM) ⇒ slow access

Computer architecture is complicated. We need a basic
performance model.

I Processor needs to be “fed” with data to work on.

I Memory access is slow; memory hierarchies help.

7 / 22



Memory hierarchy
Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory

2. All data is initially in slow memory

3. Simplifications:
I Ignore that memory access and arithmetic operations can

happen at the same time
I assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q =
f

m
, where f . . .#flops,m . . .#slow memop.

Computational intensity should be as large as possible.

8 / 22



Memory hierarchy

Example: Matrix-matrix multiply Comparison between naive and
blocked optimized matrix-matrix multiplication for different matrix
sizes: Different algorithms can increase the computational intensity
significantly.
BLAS: Optimized Basic Linear Algebra Subprograms

I Temporal and spatial locality is key for fast performance.

I Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

I In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

9 / 22



Memory hierarchy

Example: Matrix-matrix multiply Comparison between naive and
blocked optimized matrix-matrix multiplication for different matrix
sizes: Different algorithms can increase the computational intensity
significantly.
BLAS: Optimized Basic Linear Algebra Subprograms

I Temporal and spatial locality is key for fast performance.

I Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

I In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

9 / 22



Valgrind and cachegrind

Valgrind

I memory management tool and suite for debugging, also in
parallel

I profiles heap (not stack) memory access

I simulates a CPU in software

I running code with valgrind makes it slower by factor of 10-100

I Documentation: http://valgrind.org/docs/manual/

I Examples: https://github.com/NYU-HPC19/lecture2

memcheck
finds leaks

inval. mem. access
uninitialize mem.

incorrect mem. frees

cachegrind
cache profiler

sources of cache
misses

callgrind
extension to
cachegrind

function call graph

10 / 22

http://valgrind.org/docs/manual/
https://github.com/NYU-HPC19/lecture2


Outline

Organization issues

Last class summary

Why writing fast code isn’t easy

11 / 22



Levels of parallelism
I Parallelism at the bit level (64-bit

operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

I multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow

12 / 22



Levels of parallelism
I Parallelism at the bit level (64-bit

operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

I multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow

12 / 22



Levels of parallelism
I Parallelism at the bit level (64-bit

operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

I multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow

12 / 22



Levels of parallelism
I Parallelism at the bit level (64-bit

operations)

I Parallelism by pipelining
(overlapping of execution of
multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

I multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

I process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow

12 / 22



Work Depth Model

Is this parallel?

B=f(A);
C=f(B);
D=h(B);
G=h(C);
F=g(C);
E=f(B);
H=q(G, F);
R=r(H,D,E);

13 / 22



Work Depth Model

Is this parallel?

B=f(A);
C=f(B); D=h(B);
G=h(C); F=g(C); E=f(B);
H=q(G, F);
R=r(H,D,E);
How about now?

A

f

f
h

h g f

q

r

R

13 / 22



Work Depth Model

Is this parallel?

B=f(A);
C=f(B); D=h(B);
G=h(C); F=g(C); E=f(B);
H=q(G, F);
R=r(H,D,E);
How about now?

Directed Acyclic Graph (DAG)

Work = #-of-nodes
Depth = #-of-levels
Parallelism = Work/Depth

A

f

f
h

h g f

q

r

R

13 / 22



Work Depth Model

Reduction: y = x0 + x1 + x2 + · · ·+ xn
work = O(n)
depth = O(n) or O(log n)

14 / 22



Work Depth Model

Reduction: y = x0 + x1 + x2 + · · ·+ xn
work = O(n)
depth = O(n) or O(log n)

14 / 22



Work Depth Model

Reduction: y = x0 + x1 + x2 + · · ·+ xn
work = O(n)
depth = O(n) or O(log n)

14 / 22



Work Depth Model

Reduction: y = x0 + x1 + x2 + · · ·+ xn
work = O(n)
depth = O(n) or O(log n)

Matrix-Matrix Multiplication:
work = O(n3)
depth = O(log n)
parallelism = O(n3/ log n)

14 / 22



Work Depth Model

Reduction: y = x0 + x1 + x2 + · · ·+ xn
work = O(n)
depth = O(n) or O(log n)

Matrix-Matrix Multiplication:
work = O(n3)
depth = O(log n)
parallelism = O(n3/ log n)

Sorting:
work = O(n log n)
depth = O(log2 n)
parallelism = O(n/ log n)

14 / 22



Sequential Performance
Exponential growth in number of transistors. What do these extra
transistors do?

15 / 22



Sequential Performance

16 / 22



Sequential Performance

16 / 22



Sequential Performance

Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions

I Pipelining ”assembly line” parallelism

I Superscalar architecture multiple execution units

I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help?

Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.
New Instruction Set Architectures (ISA)

I MMX 2-wide float

I SSE 4-wide float, 2-wide double

I AVX 8-wide float, 4-wide double

I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

17 / 22



Sequential Performance

Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions

I Pipelining ”assembly line” parallelism

I Superscalar architecture multiple execution units

I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)

I MMX 2-wide float

I SSE 4-wide float, 2-wide double

I AVX 8-wide float, 4-wide double

I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

17 / 22



Sequential Performance

Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions

I Pipelining ”assembly line” parallelism

I Superscalar architecture multiple execution units

I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.
New Instruction Set Architectures (ISA)

I MMX 2-wide float

I SSE 4-wide float, 2-wide double

I AVX 8-wide float, 4-wide double

I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

17 / 22



Sequential Performance

Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions

I Pipelining ”assembly line” parallelism

I Superscalar architecture multiple execution units

I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.
New Instruction Set Architectures (ISA)

I MMX 2-wide float

I SSE 4-wide float, 2-wide double

I AVX 8-wide float, 4-wide double

I New instructions FMA (fused multiply accumulate)

Many ways of doing this!
17 / 22



Vectorization

SIMD: Single Intruction Multiple Data

Steps

I Start thinking in vectors instead of scalars (float, double)

I Re-organize computations as vector operations

I Tell the compiler it is safe to use SIMD instructions

18 / 22



Implicit Vectorization

I Auto-Vectorisation: Loop unrolling, inlining, compiler flags
(-O3, -march=native) and hints

I Compiler specific extensions, not portable and no guarantee of
vecorizing

I #pragma ivdep (tell GCC to ignore vector dependency)
I builtin assume aligned(a, 32) (tell GCC array is aligned)
I assume aligned(a, 32) (tell Intel compiler array is aligned)
I -fopt-info-vec-optimized (vectorization report with GCC)
I -qopt-report=2 (vectorization report with Intel)

19 / 22



Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

20 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd


Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

20 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd


Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

20 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd


Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

20 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd


Vector Intrinsics
https://software.intel.com/sites/landingpage/

IntrinsicsGuide/

I Aligned memory allocation: reading from aligned arrays is
faster, un-aligned reads require multiple instructions. Allocate
arrays using,

I void* aligned malloc(int ); (for dynamic memory)
I alignas(64) char double[128]; (for static arrays)

I Basic Vector Operations (AVX only)
I Vector type: m256d (vector of 4-doubles)
I Load aligned: mm256 load pd(double const *)
I Load unaligned: mm256 load pd(double const *)
I Store aligned: mm256 store pd(double const *, m265d)
I Store un-aligned: mm256 store pd(double const *, m265d)
I Vector Addition: mm256 add pd( m265d, m265d)
I Vector Multiplication: mm256 mul pd( m265d, m265d)
I Vector FMA: mm256 fmadd pd( m265d, m265d, m265d)
I Other intrinsics to know: permutation, comparison, bitwise

operations, streaming reads/writes, prefetch instructions etc.

21 / 22

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Special Functions

I Special functions like div, mod, exp,
√
x, sin, cos computed

in software or special hardware units.

I Require O(10) or O(100) cycles to compute.

I Example: division requires 10 cycles and has latency of 38
cycles.

I Specialized algorithms for some computations (fast inverse
sqrt used in Quake III)

22 / 22


	Organization issues
	Last class summary
	Why writing fast code isn't easy

