Advanced Topics in Numerical Analysis:

High Performance Computing

Sequential performance

Georg Stadler Dhairya Malhotra
Courant Institute, NYU
stadler@cims.nyu.edu dm4340@nyu.edu

Spring 2019, Monday, 5:10-7:00PM, WWH #1302

Feb 11, 2019

1/22

stadler@cims.nyu.edu
dm4340@nyu.edu

Outline

Organization issues

/22

Organization issues

» No class next week due to president’s day.

» Differently from what was announced last week, there will be
a class on Feb. 25. Our colleague Marsha Berger will
(thankfully) cover for us and introduce the distributed
memory model (OpenMP).

» There will be a new homework assignment (keep an eye on
the Slack #homework channel). Will be due on March 4.

» There will be a class similar to this (taught by Ben
Peherstorfer (Courant-CS)) a year from now.

Topics today

v

Valgrind and cachegrid demonstration (see also the video!)

v

Single core optimization: pipelining, vectorization

Tool of the week: Git

v

v

Parallel machines and programming models

Outline

Last class summary

/22

Memory hierarchies
On my Mac Book Pro: 32KB L1 Cache, 256KB L2 Cache, 3MB Cache, 8GB RAM

THE
MEMORY HIERARCHY

sueerFast |

SUPER EXPENSIVE |

fore) TINY CAPACTTY |
RECISTER |

CPU CACHE
LEVEL 1 (L1) CACHE FASTER |
LEVEL 2 (L7) CACHE EXPENSIVE |
LEVEL 3 ((3) CACHE SMALL CAPACITY |
FAST |

PRICED REASONRBLY |

AVERAGE CAPAC]TBJ

AVERAGE SPEED |
PRICED REASONABLY |
AVERAGE CAPACITH

| MECHANICAL
HARD DRIVES

CPU: O(1ns), L2/L3: O(10ns), RAM: O(100ns), disc: O(10ms)

6/22

Memory hierarchies

Important terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

22

Memory hierarchies

Important terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);

22

Memory hierarchies

Important terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);
» cache-hit: required data is available in cache = fast access

22

Memory hierarchies

Important terms:

>

latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);
cache-hit: required data is available in cache = fast access

cache-miss: required data is not in cache and must be loaded
from main memory (RAM) = slow access

22

Memory hierarchies

Important terms:

» latency: time it takes to load/write data from/at a specific
location in RAM to/from the CPU registers (in seconds)

» bandwidth: rate at which data can be read/written (for large
data); in (bytes/second);
» cache-hit: required data is available in cache = fast access

» cache-miss: required data is not in cache and must be loaded
from main memory (RAM) = slow access

Computer architecture is complicated. We need a basic
performance model.

» Processor needs to be “fed” with data to work on.

» Memory access is slow; memory hierarchies help.

22

Memory hierarchy

Simple model

1. Only consider two levels in hierarchy, fast (cache) and slow
(RAM) memory
2. All data is initially in slow memory
3. Simplifications:
> lIgnore that memory access and arithmetic operations can

happen at the same time
» assume time for access to fast memory is 0

4. Computational intensity: flops per slow memory access

q= i, where f...#flops,m...#slow memop.
m

Computational intensity should be as large as possible.

22

Memory hierarchy

Example: Matrix-matrix multiply Comparison between naive and
blocked optimized matrix-matrix multiplication for different matrix
sizes: Different algorithms can increase the computational intensity
significantly.

BLAS: Optimized Basic Linear Algebra Subprograms

22

Memory hierarchy

Example: Matrix-matrix multiply Comparison between naive and
blocked optimized matrix-matrix multiplication for different matrix
sizes: Different algorithms can increase the computational intensity
significantly.

BLAS: Optimized Basic Linear Algebra Subprograms

» Temporal and spatial locality is key for fast performance.

» Since arithmetic is cheap compared to memory access, one can
consider making extra flops if it reduces the memory access.

» In distributed-memory parallel computations, the memory
hierarchy is extended to data stored on other processors, which
is only available through communication over the network.

Valgrind and cachegrind

Valgrind

» memory management tool and suite for debugging, also in
parallel

» profiles heap (not stack) memory access

» simulates a CPU in software

» running code with valgrind makes it slower by factor of 10-100
» Documentation: http://valgrind.org/docs/manual/

» Examples: https://github.com/NYU-HPC19/lecture?2

memcheck cachegrind callgrind

finds leaks cache profiler extension to
inval. mem. access sources of cache cachegrind
uninitialize mem. misses function call graph

incorrect mem. frees

10/22

http://valgrind.org/docs/manual/
https://github.com/NYU-HPC19/lecture2

Outline

Why writing fast code isn't easy

11/22

Levels of parallelism

» Parallelism at the bit level (64-bit

operations)

EX
D
IF

[GENE)
G

MEM
EX we
D MEM| WB
IF EX | MEM WB |
ID | EX MEM| WB

12/22

Levels of parallelism

> Parallelism at the bit level (64-bit

Opel’atlonS) [F [1o [EX [MEM

» 1 1 ni i F | D | EX wa
Parallellsr.n by plpellnlr?g 3 1 e
(overlapping of execution of L EX [Em] we |

ID | EX MEM WB

multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

D | EX MEM WB
D | EX |MEM WB

12 /22

Levels of parallelism

> Parallelism at the bit level (64-bit

Opel’atlonS) [F [1o [EX [MEM

» 1 1 ni i IF | ID | EX wa
Parallellsr.n by plpelmlr?g 3 1 e
(overlapping of execution of L EX [MEM] we

ID | EX MEM| WB

multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

» multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

D | EX |MEM we

all of the above assume single sequential control flow

12 /22

Levels of parallelism

> Parallelism at the bit level (64-bit

Opel’atlonS) [F [1o [EX [MEM

» 1 1 ni i F | D | EX wa
Parallellsr.n by plpellnlr?g 3 1 e
(overlapping of execution of L EX [Em] we |

ID | EX MEM WB

multiple instructions); “assembly
line” parallelism,
Instruction-Level-Parallelism (ILP);
several operators per cycle

wa
W8 |

MEM| WB

MEM | WB

EX |MEM| WB
EX_|MEM WB

ID | EX |MEM W8
D | EX |MEM we

» multiple functional units
parallelism: ALUs (algorithmic
logical units), FPUs (floating point
units), load/store memory units,. . .

all of the above assume single sequential control flow

» process/thread level parallelism: independent processor cores,
multicore processors; parallel control flow

12 /22

Work Depth Model

Is this parallel?
B=f(A);
C=f(B);
D=h(B);
G=h(C);
F=g(C);
E=f(B);
H=q(G, F);
R=r(H,D,E);

13 /22

Work Depth Model

Is this parallel?

B=f(A);

C=f(B); D=h(B);

G=h(C); F=g(C); E=f(B);
H=q(G, F);

R=r(H,D,E);

How about now?

13 /22

Work Depth Model

Is this parallel?

B=F(A); f
C=f(B); D=h(B);

G=h(C); F—g(C); E=f(B) (9)
H=q(G, F);

R:?(H,D,E); (f) (h)

How about now?

Directed Acyclic Graph (DAG)
Work = +#-of-nodes

Depth = #-of-levels
Parallelism = Work/Depth

13 /22

Work Depth Model

Reduction: y=a29+21 +22+ -+ a,
work = O(n)
depth = O(n) or O(logn)

14 /22

Work Depth Model

Reduction: y=a29+21 +22+ -+ a,
work = O(n)
depth = O(n) or O(logn)

Nbd bbb

14 /22

Work Depth Model

Reduction: y=a29+21 +22+ -+ a,
work = O(n)
depth = O(n) or O(logn)

Nbd bbb

X1 X5 X3 Xz Xg Xg X5 Xy

\

14 /22

Work Depth Model

Reduction: y=a29+21 +22+ -+ a,
work = O(n)
depth = O(n) or O(logn)

Matrix-Matrix Multiplication:
work = O(n?)

depth = O(logn)

parallelism = O(n3/logn)

14 /22

Work Depth Model

Reduction: y=a29+21 +22+ -+ a,
work = O(n)
depth = O(n) or O(logn)

Matrix-Matrix Multiplication:
work = O(n?)

depth = O(logn)

parallelism = O(n3/logn)

Sorting:

work = O(nlogn)

depth = O(log? n)
parallelism = O(n/logn)

14 /22

Sequential Performance

Exponential growth in number of transistors. What do these extra
transistors do?

10,000,000
Dua ore Ita []
1,000,000
n -
Intel CPU Trends
{sources: Intel, Wikipedia, K. Olukotun)
100,000
Pentium 4
10,000
[rentium i
(11T
1,000) A
100 = N
ada + 1
- & 4
L1 R , Wk
10 [:ﬂ
/ .e a ‘ &
[LI .
"o N a
1 : | 1 & Transistors (000) |
‘."‘ / pe® @ Clock Speed (MHZ)
see® a Power (W)
® Perf /Clock {ILP)
0
Herb Sutter 1970 1975 1980 1985 19390 1995 2000 2005 2010

15/22

Sequential Performance

Front

(BPU)

Branch
Predictor

End

WicroCade.
Sequencer

Rom
(s RoM)

Tnstruct
(20, 2

[e Renarme [Alocate / Retirerment

¥

Load Buffer
(72 entries)

(10 entries)

Line Fill Buffers (LFB)

ion Cache
32KiB 8-Way Instruction
2
N
NS
H
&
Y etnes
ctor Physical Register File|
(S regmers
&
sl 8
2l 2K
i 8o
o P8
B 58
K
2
NG
NE
3
L1 Data Cache o
32KiB 8-Way

fE)

16 /22

Sequential Performance

(sgQD) sasng wpeg uowmo)y

Branch Order Buffer
| Register Alias Table (RAT) }1 1 T 1 T (BOB) (48-entry)

— Rename / Allocate / Retirement T p
[Move Elimination | ReOrder Bufler (192 entries) Ones Idioms | [Zeroing Idioms |

Integer Physical Register File Vector Physical Register File
(168 Registers) (168 Registers)

16 /22

Sequential Performance

Instruction Level Parallelism (ILP)

» Out of order execution re-order instructions

v

Pipelining "assembly line" parallelism

v

Superscalar architecture multiple execution units

v

Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help?

17 /22

Sequential Performance

Instruction Level Parallelism (ILP)

» Out of order execution re-order instructions

v

Pipelining "assembly line" parallelism

v

Superscalar architecture multiple execution units

v

Branch prediction speculative execution

Compilers and processors already very good at this part!

How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

17 /22

Sequential Performance

Instruction Level Parallelism (ILP)

» Out of order execution re-order instructions

v

Pipelining "assembly line" parallelism

v

Superscalar architecture multiple execution units

v

Branch prediction speculative execution

Compilers and processors already very good at this part!

How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)

» MMX 2-wide float

» SSE 4-wide float, 2-wide double

» AVX 8-wide float, 4-wide double

» New instructions FMA (fused multiply accumulate)

17 /22

Sequential Performance

Instruction Level Parallelism (ILP)

» Out of order execution re-order instructions

v

Pipelining "assembly line" parallelism

v

Superscalar architecture multiple execution units

v

Branch prediction speculative execution

Compilers and processors already very good at this part!

How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)

» MMX 2-wide float

» SSE 4-wide float, 2-wide double

» AVX 8-wide float, 4-wide double

» New instructions FMA (fused multiply accumulate)
Many ways of doing this!

17 /22

Vectorization

SIMD: Single Intruction Multiple Data

(a) Scalar Operation (b) SIMD Operation

&) - e - ad
ERg T g™

Steps
» Start thinking in vectors instead of scalars (float, double)

7|

» Re-organize computations as vector operations
» Tell the compiler it is safe to use SIMD instructions

18/22

Implicit Vectorization

» Auto-Vectorisation: Loop unrolling, inlining, compiler flags
(-03, -march=native) and hints

>

vV vy vy VvVYy

Compiler specific extensions, not portable and no guarantee of
vecorizing

#pragma ivdep (tell GCC to ignore vector dependency)
__builtin_assume_aligned(a, 32) (tell GCC array is aligned)
__assume_aligned(a, 32) (tell Intel compiler array is aligned)
-fopt-info-vec-optimized (vectorization report with GCC)
-qopt-report=2 (vectorization report with Intel)

19 /22

Explicit Vectorization

» OpenMP 4.0: SIMD pragma

» #pragma omp simd [clauses]| (vectorize for loops)
» clause: safelen(len) (vectors of length len are safe)
» clause: aligned(v1l,v2:alignment) (vectors are aligned)

20 /22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

» OpenMP 4.0: SIMD pragma

» #pragma omp simd [clauses]| (vectorize for loops)
» clause: safelen(len) (vectors of length len are safe)
» clause: aligned(v1l,v2:alignment) (vectors are aligned)

» Assembly: too hard!

20 /22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

» OpenMP 4.0: SIMD pragma

» #pragma omp simd [clauses]| (vectorize for loops)
» clause: safelen(len) (vectors of length len are safe)
» clause: aligned(v1,v2:alignment) (vectors are aligned)

» Assembly: too hard!

» Vector Intrinsics: details on next slide

20 /22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

» OpenMP 4.0: SIMD pragma
» #pragma omp simd [clauses]| (vectorize for loops)

>

>

clause: safelen(len) (vectors of length len are safe)
clause: aligned(v1,v2:alignment) (vectors are aligned)

» Assembly: too hard!

» Vector Intrinsics: details on next slide

» Vector Intrinsics (the C++ way)

>

>

Vector objects, overloaded operatos (+, -, *, ||, && etc)
See file "intrin-wrapper.h” in
https://github.com/NYU-HPC19/lecture3

Other implementations
https://www.agner.org/optimize/#vectorclass

Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

20 /22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Vector Intrinsics
https://software.intel.com/sites/landingpage/

IntrinsicsGuide/

» Aligned memory allocation: reading from aligned arrays is
faster, un-aligned reads require multiple instructions. Allocate
arrays using,

>

>

void* aligned_malloc(int); (for dynamic memory)
alignas(64) char double[128]; (for static arrays)

» Basic Vector Operations (AVX only)

vV VY vV VY VY VvV VvV VY

Vector type: __m256d (vector of 4-doubles)

Load aligned: _mm256_load_pd(double const *)

Load unaligned: -mm256_load_pd(double const *)

Store aligned: _mm256_store_pd(double const *, __m265d)
Store un-aligned: _-mm256_store_pd(double const *, __m265d)
Vector Addition: _-mm256_add_pd(_-m265d, __m265d)

Vector Multiplication: _-mm256_mul_pd(_-m265d, -_-m265d)
Vector FMA: _-mm256_fmadd_pd(--m265d, __m265d, _m265d)
Other intrinsics to know: permutation, comparison, bitwise
operations, streaming reads/writes, prefetch instructions etc.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Special Functions

» Special functions like div, mod, exp, /z, sin, cos computed
in software or special hardware units.

» Require O(10) or O(100) cycles to compute.

» Example: division requires 10 cycles and has latency of 38
cycles.

» Specialized algorithms for some computations (fast inverse
sqrt used in Quake I11)

N
N

N

	Organization issues
	Last class summary
	Why writing fast code isn't easy

