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Topics today

I Parallel programming models

I Shared memory parallelism—OpenMP

I Tool of the week: Git
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Parallel architectures (Flynn’s taxonomy)

Characterization of architectures according to Flynn:

SISD: Single instruction, single data. This is the conventional
sequential model.

SIMD: Single instruction, multiple data. Multiple processing units
with identical instructions, each one working on di↵erent data.
Useful when a lot of completely identical tasks are needed.

MIMD: Multiple instructions, multiple data. Multiple processing units
with separate (but often similar) instructions and
data/memory access (shared or distributed). We will mainly
use this approach.

MISD: Multiple instructions, single data. Not practical.
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Programming model must reflect architecture

Example: Inner product between two (very long) vectors: aT b:

I Where are a, b stored? Single memory or distributed?

I What work should be done by which processor?

I How do they coordinate their result?
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Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Programming model must manage di↵erent threads and avoid race
conditions.
OpenMP: Open Multi-Processing is the application interface (API)
that supports shared memory parallelism: www.openmp.org
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Distributed memory programming model

I Program is run by a collection
of named processes; fixed at
start-up

I Local address space; no shared
data

I logically shared data is
distributed (e.g., every
processor only has direct access
to a chunk of rows of a matrix)

I Explicit communication through
send/receive pairs

Programming model must accommodate communication.

MPI: Massage Passing Interface (di↵erent implementations: LAM,
Open-MPI, Mpich, Mvapich), http://www.mpi-forum.org/
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Hybrid distributed/shared programming model

I Pure MPI approach splits the memory of a multicore processor
into independent memory pieces, and uses MPI to exchange
information between them.

I Hybrid approach uses MPI across processors, and OpenMP for
processor cores that have access to the same memory.

I A similar hybrid approach is also used for hybrid architectures,
i.e., computers that contain CPUs and accelerators (GPGPUs,
MICs).
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Other parallel programming approaches

I Grid computing: loosely coupled problems, most famous
example was SETI@Home.

I MapReduce: Introduced by Google; targets large data sets
with parallel, distributed algorithms on a cluster.

I WebCL

I Pthreads

I CUDA

I Cilk

I . . .
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Amdahl’s law
Is there enough parallelism in my problem?

Suppose only part of the application is parallel
Amdahl’s law:

I Let s be the fraction of work done sequentially, and (1� s)
the part that is done in parallel

I p. . . number of parallel processor (cores).

Speedup:

time(1 proc)

time(p proc)
 1

s+ (1� s)/p
 1

s

Thus: Performance is limited by
sequential part.

Source: Wikipedia
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Load (im)balance in parallel computations

In parallel computations, the work should be distributed evenly
across workers/processors.

I Load imbalance: Idle time due to insu�cient parallelism or
unequal sized tasks

I Initial/static load balancing: distribution of work at beginning
of computation

I Dynamic load balancing: work load needs to be re-balanced
during computation. Imbalance can occur, e.g., due to

I adapting (mesh refinement)
I in completely unstructured problems
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Parallel scalability
Strong and weak scaling/speedup
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Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Only one process is running, which can fork into shared memory
threads.
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Threads versus process

I A process is an independent execution unit, which contains
their own state information (pointers to instruction and
stack). One process can contain several threads.

I Threads within a process share the same address space, and
communicate directly using shared variables. Seperate stack
but shared heap memory.

I Stack memory: Used for temporarily storing data; fast;
last-in-first-out principle. Examples int a=2; double

b=2.11; etc; no deallocation necessary; small size; static.

I Heap memory: Not managed automatically, manually
allocate/de-allocate/re-allocate; slower; larger;

I Using several threads can also be useful on a single processor
(“multithreading”), depending on the memory latency.
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Shared memory programming

I POSIX Threads (Pthreads) library; more intrusive than
OpenMP.

I PGAS languages: partitioned global address space: logically
partitioned but can be programmed like a global memory
address space (communication is taken care of in the
background)

I OpenMP: open multi-processing is a light-weight application
interface (API), that supports shared memory parallelism.
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Shared Memory Machine Model
Symmetric Multiprocessors (SMP): processors all connected to a
large shared memory. Examples are processors connected by
crossbar, or multicore chips.
Key characteristic is uniform memory access (UMA)

C

P PP

Bus

Shared Memory

C C C

Caches are a problem - need to be kept coherent = when one
CPU changes a value in memory, then all other CPUs will get
the same value when they access it. All caches will show a
coherent value.



Distributed Shared Memory
Memory is logically shared but physically distributed

• Any processor can access any address in memory
• Cache lines (or pages) passed around machine. Difficulty

is cache coherency protocols.
• CC-NUMA architecture (if network is cache-coherent)

Interconnection Network

P PP

M M M

C C C

(SGI Altix at NASA Ames - had 10,240 cpus of Itanium 2 nodes connected by
Infiniband, was ranked 84 in June 2010 list, ranked 3 in 2008)



Shared Memory Languages

• pthreads - POSIX (Portable Operating System Interface for
Unix) threads; heavyweight, more clumsy

• PGAS languages - Partitioned Global Address Space
UPC, Titanium, Co-Array Fortran; not yet popular enough,
or efficient enough

• OpenMP - newer standard for shared memory parallel
programming, lighter weight threads, not a programming
language but an API for C and Fortran



OpenMP Overview

OpenMP is an API for multithreaded, shared memory parallelism.

• A set of compiler directives inserted in the source program

• pragmas in C/C++ (pragma = compiler directive external to
prog. lang. for giving additional info., usually non-portable,
treated like comments if not understood)

• (specially written) comments in fortran

• Library functions

• Environment variables

Goal is standardization, ease of use, portability. Allows incremental
approach. Significant parallelism possible with just 3 or 4 directives.
Works on SMPs and DSMs.

Allows fine and coarse-grained parallelism; loop level as well as
explicit work assignment to threads as in SPMD.



Basic Idea
Explicit programmer control of parallelization using fork-join
model of parallel execution

• all OpenMP programs begin as single process, the master
thread, which executes until a parallel region construct
encountered

• FORK: master thread creates team of parallel threads
• JOIN: When threads complete statements in parallel

region construct they synchronize and terminate, leaving
only the master thread. (similar to fork-join of Pthreads)

fork join joinfork

parallel region parallel region



Basic Idea

• User inserts directives telling compiler how to execute
statements

• which parts are parallel
• how to assign code in parallel regions to threads
• what data is private (local) to threads
• #pragma omp in C and !$omp in Fortran

• Compiler generates explicit threaded code

• Rule of thumb: One thread per core (2 or 4 with
hyperthreading)

• Dependencies in parallel parts require synchronization
between threads



Simple Example

Compile line:
icc -openmp helloWorld.c
gcc -fopenmp helloWorld.c

Marsha Berger
icc -qopenmp 



Simple Example
Sample Output:

MacBook-Pro% a.out
Hello world from thread 1
Hello world from thread 0
Hello world from thread 2
Hello world from thread 3

MacBook-Pro% a.out
Hello world from thread 0
Hello world from thread 3
Hello world from thread 2
Hello world from thread 1

(My laptop only has 2 cores)

Marsha Berger
how set # threads?



Setting the Number of Threads

Environment Variables:
setenv OMP_NUM_THREADS 2 (cshell)
export OMP_NUM_THREADS=2 (bash shell)

Library call:
omp_set_num_threads(2)



Parallel Construct

#include <omp.h>

int main(){
int var1, var2, var3;

...serial Code

#pragma omp parallel private(var1, var2) shared (var3)
{

...parallel section
}

...resume serial code

}



Parallel Directives

• When a thread reaches a PARALLEL directive, it becomes
the master and has thread number 0.

• All threads execute the same code in the parallel region
(Possibly redundant, or use work-sharing constructs to
distribute the work)

• There is an implied barrier⇤ at the end of a parallel section.
Only the master thread continues past this point.

• If a thread terminates within a parallel region, all threads
will terminates, and the result is undefined.

• Cannot branch into or out of a parallel region.

barrier - all threads wait for each other; no thread proceeds until all threads
have reached that point



Parallel Directives

• If program compiled serially, openMP pragmas and
comments ignored, stub library for omp library routines

• easy path to parallelization

• One source for both sequential and parallel helps
maintenance.



Work-Sharing Constructs

• work-sharing construct divides work among member
threads. Must be dynamically within a parallel region.

• No new threads launched. Construct must be encountered
by all threads in the team.

• No implied barrier on entry to a work-sharing construct;
Yes at end of construct.

3 types of work-sharing construct (4 in Fortran - array
constructs):

• for loop: share iterates of for loop (“data parallelism”)
iterates must be independent

• sections: work broken into discrete section, each executed
by a thread (“functional parallelism”)

• single: section of code executed by one thread only



FOR directive schedule example



FOR directive schedule example

for loop with 20 iterations and 8 threads:

icc: 4 threads get 3 iterations and 4 threads get 2
gcc: 6 threads get 3 iterations, 1 thread gets 2, 1 gets none



OMP Directives
All directives:

#pragma omp directive [clause ...]
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

Directives are:
• Case sensitive (not for Fortran)
• Only one directive-name per statement
• Directives apply to at most one succeeding statement,

which must be a structured block.
• Continue on succeeding lines with backslash ( "\" )



FOR directive
#pragma omp for [clause ...]

schedule (type [,chunk])
private (list)
firstprivate(list)
lastprivate(list)
shared (list)
reduction (operator: list)
nowait

SCHEDULE: describes how to divide the loop iterates
• static = divided into pieces of size chunk, and statically assigned to

threads. Default is approx. equal sized chunks (at most 1 per thread)
• dynamic = divided into pieces of size chunk and dynamically scheduled

as requested. Default chunk size 1.
• guided = size of chunk decreases over time. (Init. size proportional to

the number of unassigned iterations divided by number of threads,
decreasing to chunk size)

• runtime=schedule decision deferred to runtime, set by environment
variable OMP SCHEDULE.



Example: FOR directive

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

int main(){
int i, chunk;
float a[N], b[N], c[N];
... /* initialize a, b */
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{

#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i<N; i++)

c[i] = a[i] + b[i];
} /* end parallel section */

} /* end main */



FOR example

#pragma omp parallel shared(n,a,b,x,y), private(i)
{ // start parallel region

#pragma omp for nowait
for (i=0;i<n;i++)
b[i] = += a[i];

#pragma omp for nowait
for (i=0;i<n;i++)
x[i] = 1./y[i];

} // end parallel region (implied barrier)

Spawning tasks is expensive: reuse if possible.
nowait clause: minimize synchronization.



SINGLE directive

#pragma omp single [clause ...]
private (list)
firstprivate(list)
nowait

structured block

• SINGLE directive says only one thread in the team executes the
enclosed code

• useful for code that isn’t thread-safe (e.g. I/O)

• rest of threads wait at the end of enclosed code block (unless
NOWAIT clause specified)

• no branching in or out of SINGLE block



Clauses

These clauses not strictly necessary but may be convenient
(and may have performance penalties too).

• lastprivate private data is undefined after parallel construct.
this gives it the value of last iteration (as if sequential) or
sections construct (in lexical order).

• firstprivate pre-initialize private vars with value of variable
with same name before parallel construct.

• default (none | shared). In fortran can also have private.
Then only need to list exceptions. (none is better habit).

• nowait suppress implicit barrier at end of work sharing
construct. Cannot ignore at end of parallel region. (But no
guarantee that if have 2 for loops where second depends
on data from first that same threads execute same iterates)



More Clauses

• if (logical expr) true = execute parallel region with team of threads; false
= run serially (loop too small, too much overhead)

• reduction for assoc. and commutative operators compiler helps out;
reduction variable is shared by default (no need to specify).

#pragma omp parallel for default(none) \
shared(n,a) \
reduction(+:sum)

for (i=0;i<n;i++)
sum += a[i]

/* end of parallel reduction */

Also other arithmetic and logical ops., min,max instrinsics in Fortan
only.

• copyprivate only with single direction. one thread reads and initializes
private vars. which are copied to other threads before they leave barrier.

• threadprivate variables persist between different parallel sections
(unlike private vars). (applies to global vars. must have dynamic false)



Synchronization

Synchronization: needed to protect access to shared data

• Implicit barrier synchronization at end of parallel region (no

explicit support for synch. subset of threads). Can invoke

explicitly with #pragma omp barrier. All threads must see

same sequence of work-sharing and barrier regions .

• critical sections: only one thread at a time in critical region with

the same name. #pragma omp critical [(name)]

• atomic operation: protects updates to individual memory loc.

Only simple expressions allowed. #pragma omp atomic

• also flush, locks, master operations - perhaps discussed later.

At all these (implicit or explicit ) synchronization points OpenMP

ensures that threads have consistent values of shared data.



Critical Example
#pragma omp parallel sections
{

#pragma parallel section
{

task = produce_task();
#pragma omp critical (task_queue)
{

insert_into_queue(task);
}

}
#pragma parallel section
{

#pragma omp critical (task_queue)
{

task = delete_from_queue(task);
}
consume_task(task);

}
}



Atomic Examples

#pragma omp parallel shared(n,ic) private(i)
for (i=0;i<n;i++){

#pragma omp atomic
ic = ic +1;

}

ic incremented atomically

#pragma omp parallel shared(n,ic) private(i)
for (i=0;i<n;i++){

#pragma omp atomic
ic = ic + bigfunc();

}

bigfunc not atomic, only ic update



Atomic Example
int sum = 0;
#pragma omp parallel for shared(n,a,sum)
{
for (i=0; i<n; i++){
#pragma omp atomic

sum = sum + a[i];
}

}

Better to use a reduction clause:

int sum = 0;
#pragma omp parallel for shared(n,a) \

reduction(+:sum)
{
for (i=0; i<n; i++){

sum += a[i];
}

}



Reductions

Many different associative operations can be used in reductions:
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Why Use Version Control?
Slides adapted from Andreas Skielboe

A Version Control System (VCS) is an integrated fool-proof
framework for

I Backup and Restore

I Short and long-term undo

I Tracking changes

I Synchronization

I Collaborating

I Sandboxing

... with minimal overhead.
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Local Version Control Systems

Conventional version control systems provides some of these
features by making a local database with all changes made to files.

Any file can be recreated by getting changes from the database
and patch them up.
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Centralized Version Control Systems

To enable synchronization and collaborative features the database
is stored on a central VCS server, where everyone works in the
same database.

Introduces problems: single point of failure, inability to work
o✏ine.
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Distributed Version Control Systems

To overcome problems related to centralization, distributed VCSs
(DVCSs) were invented. Keeping a complete copy of database in
every working directory.

Actually the most simple and most powerful implementation of
any VCS.
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Git Basics - The Git Workflow

The simplest use of Git:

I Modify files in your working directory.

I Stage the files, adding snapshots of them to your staging
area.

I Commit, takes files in the staging area and stores that
snapshot permanently to your Git directory.
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Git Basics - The Three States

The three basic states of files in your Git repository:
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Git Basics - Commits

Each commit in the git directory holds a snapshot of the files that
were staged and thus went into that commit, along with author
information.

Each and every commit can always be looked at and retrieved.
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Git Basics - Working with remotes

In Git all remotes are equal.

A remote in Git is nothing more than a link to another git directory.
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Git Basics - Working with remotes

The easiest commands to get started working with a remote are

I clone: Cloning a remote will make a complete local copy.

I pull: Getting changes from a remote.

I push: Sending changes to a remote.

Fear not! We are starting to get into more advanced topics. So
lets look at some examples.
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Git Basics - Advantages

Basic advantages of using Git:

I Nearly every operation is local.

I Committed snapshots are always kept.

I Strong support for non-linear development.
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Hands-on - First-Time Git Setup

Before using Git for the first time:

Pick your identity

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Check your settings

$ git config --list

Get help

$ git help <verb>
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Hands-on - Getting started with a bare remote server

Using a Git server (ie. no working directory / bare repository) is
the analogue to a regular centralized VCS in Git.
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Hands-on - Getting started with remote server

When the remote server is set up with an initialized Git directory
you can simply clone the repository:

Cloning a remote repository

$ git clone <repository>

You will then get a complete local copy of that repository, which
you can edit.
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Hands-on - Getting started with remote server

With your local working copy you can make any changes to the
files in your working directory as you like. When satisfied with your
changes you add any modified or new files to the staging area
using add:

Adding files to the staging area

$ git add <filepattern>
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Hands-on - Getting started with remote server

Finally to commit the files in the staging area you run commit
supplying a commit message.

Committing staging area to the repository

$ git commit -m <msg>

Note that so far everything is happening locally in your working
directory.
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Hands-on - Getting started with remote server

To share your commits with the remote you invoke the push
command:

Pushing local commits to the remote

$ git push

To recieve changes that other people have pushed to the remote
server you can use the pull command:

Pulling remote commits to the local working directory

$ git pull

And thats it.
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Hands-on - Summary

Summary of a minimal Git workflow:

I clone remote repository

I add you changes to the staging area

I commit those changes to the git directory

I push your changes to the remote repository

I pull remote changes to your local working directory
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More advanced topics

Git is a powerful and flexible DVCS. Some very useful, but a bit
more advanced features include:

I Branching

I Merging

I Tagging

I Rebasing
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References

Some good Git sources for information:

I Git Community Book - http://book.git-scm.com/

I Pro Git - http://progit.org/

I Git Reference - http://gitref.org/

I GitHub - http://github.com/

I Git from the bottom up - http:
//ftp.newartisans.com/pub/git.from.bottom.up.pdf

I Understanding Git Conceptually -
http://www.eecs.harvard.edu/~cduan/technical/git/

I Git Immersion - http://gitimmersion.com/
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Applications

GUIs for Git:

I GitX (MacOS) - http://gitx.frim.nl/

I Giggle (Linux) - http://live.gnome.org/giggle
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