
Advanced Topics in Numerical Analysis:
High Performance Computing

More Shared Mmory Parallelism, Git, Make

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

March 8, 2019

1 / 39



Outline

Organization issues

Parallel machines and programming models

Shared memory parallelism–OpenMP

Git—repository systems

2 / 39



Organization

Scheduling:
I Thanks for coming to our makeup class!
I Next class on Monday, March 11 (we’ll start with GPUs)
I Homework assignment #2 due on Monday, there will be a

(short) new assignment handed out next week.
Topics today:

I Shared memory parallelism (cont’d)
I Tools of the week: Git (remove), Make

3 / 39



Outline

Organization issues

Parallel machines and programming models

Shared memory parallelism–OpenMP

Git—repository systems

4 / 39



Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Programming model must manage different threads and avoid race
conditions.
OpenMP: Open Multi-Processing is the application interface (API)
that supports shared memory parallelism: www.openmp.org

5 / 39

www.openmp.org


Shared memory programming model

Advantages and disadvantages:
+ Relative easy to parallelize loops etc. in serial programs
- Limited amount of parallelism possible in practice
- Memory bus becomes bottleneck if too many processors

access the same memory (usually used with ≤ 50 cores)
- Cache coherency: Need to make sure that values stored in

cache of each processor coincide (handled by hardware)
- Size of shared memory is limited and can get very expensive

6 / 39



Distributed memory programming model
I Program is run by a collection

of named processes; fixed at
start-up

I Local address space; no shared
data

I logically shared data is
distributed (e.g., every
processor only has direct access
to a chunk of rows of a matrix)

I Explicit communication through
send/receive pairs

Programming model must accommodate communication.
MPI: Massage Passing Interface (different implementations: LAM,
Open-MPI, Mpich, Mvapich), http://www.mpi-forum.org/

7 / 39

http://www.mpi-forum.org/


Hybrid distributed/shared programming model

I Pure MPI approach splits the memory of a multicore processor
into independent memory pieces, and uses MPI to exchange
information between them.

I Hybrid approach uses MPI across processors, and OpenMP for
processor cores that have access to the same memory.

I A similar hybrid approach is also used for hybrid architectures,
i.e., computers that contain CPUs and accelerators (GPGPUs,
MICs).

8 / 39



Other parallel programming approaches

I Grid computing: loosely coupled problems, most famous
example was SETI@Home.

I MapReduce: Introduced by Google; targets large data sets
with parallel, distributed algorithms on a cluster.

I WebCL
I Pthreads
I CUDA
I Cilk
I . . .

9 / 39



Amdahl’s law
Is there enough parallelism in my problem?

Suppose only part of the application is parallel
Amdahl’s law:

I Let s be the fraction of work done sequentially, and (1 − s)
the part that is done in parallel

I p. . . number of parallel processor (cores).

Speedup:

time(1 proc)
time(p proc) ≤ 1

s + (1 − s)/p
≤ 1

s

Thus: Performance is limited by
sequential part.

Source: Wikipedia

10 / 39



Load (im)balance in parallel computations

In parallel computations, the work should be distributed evenly
across workers/processors.

I Load imbalance: Idle time due to insufficient parallelism or
unequal sized tasks

I Initial/static load balancing: distribution of work at beginning
of computation

I Dynamic load balancing: work load needs to be re-balanced
during computation. Imbalance can occur, e.g., due to

I adapting (mesh refinement)
I in completely unstructured problems

11 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

Weak scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

Weak scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

Weak scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Parallel scalability
Strong and weak scaling/speedup

Strong scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

tim
e

=
1/

effi
cie

nc
y

Weak scalability

work

cputime

1 2 4 8 16 320%

20%

40%

60%

80%

100%

no of procs

effi
cie

nc
y

12 / 39



Outline

Organization issues

Parallel machines and programming models

Shared memory parallelism–OpenMP

Git—repository systems

13 / 39



Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Only one process is running, which can fork into shared memory
threads.

14 / 39



Threads versus process

I A process is an independent execution unit, which contains
their own state information (pointers to instruction and
stack). One process can contain several threads.

I Threads within a process share the same address space, and
communicate directly using shared variables. Seperate stack
but shared heap memory.

I Stack memory: Used for temporarily storing data; fast;
last-in-first-out principle. Examples int a=2; double
b=2.11; etc; no deallocation necessary; small size; static.

I Heap memory: Not managed automatically, manually
allocate/de-allocate/re-allocate; slower; larger;

I Using several threads can also be useful on a single processor
(“multithreading”), depending on the memory latency.

15 / 39



Shared memory programming with OpenMP

I Split program into serial and into parallel regions
I Race condition: more than one thread reads/writes to the

same shared memory location
I Easy to parallelize loops without data dependencies by adding

#pragma commands
I pragmas are compiler directive externals to the programming

language; they are ignored by the compiler if it doesn’t
understand them

16 / 39



Outline

Organization issues

Parallel machines and programming models

Shared memory parallelism–OpenMP

Git—repository systems

17 / 39



Why Use Version Control?
Slides adapted from Andreas Skielboe

A Version Control System (VCS) is an integrated fool-proof
framework for

I Backup and Restore
I Short and long-term undo
I Tracking changes
I Synchronization
I Collaborating
I Sandboxing

... with minimal overhead.

18 / 39



Local Version Control Systems

Conventional version control systems provides some of these
features by making a local database with all changes made to files.

Any file can be recreated by getting changes from the database
and patch them up.

19 / 39



Centralized Version Control Systems
To enable synchronization and collaborative features the database
is stored on a central VCS server, where everyone works in the
same database.

Introduces problems: single point of failure, inability to work
offline.

20 / 39



Distributed Version Control Systems
To overcome problems related to centralization, distributed VCSs
(DVCSs) were invented. Keeping a complete copy of database in
every working directory.

Actually the most simple and most powerful implementation of
any VCS.

21 / 39



Git Basics - The Git Workflow

The simplest use of Git:
I Modify files in your working directory.
I Stage the files, adding snapshots of them to your staging

area.
I Commit, takes files in the staging area and stores that

snapshot permanently to your Git directory.

22 / 39



Git Basics - The Three States

The three basic states of files in your Git repository:

23 / 39



Git Basics - Commits

Each commit in the git directory holds a snapshot of the files that
were staged and thus went into that commit, along with author
information.

Each and every commit can always be looked at and retrieved.

24 / 39



Git Basics - Working with remotes

In Git all remotes are equal.

A remote in Git is nothing more than a link to another git directory.

25 / 39



Git Basics - Working with remotes

The easiest commands to get started working with a remote are
I clone: Cloning a remote will make a complete local copy.
I pull: Getting changes from a remote.
I push: Sending changes to a remote.

Fear not! We are starting to get into more advanced topics. So
lets look at some examples.

26 / 39



Git Basics - Advantages

Basic advantages of using Git:
I Nearly every operation is local.
I Committed snapshots are always kept.
I Strong support for non-linear development.

27 / 39



Hands-on - First-Time Git Setup
Before using Git for the first time:

Pick your identity

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Check your settings

$ git config --list

Get help

$ git help <verb>

28 / 39



Hands-on - Getting started with a bare remote server

Using a Git server (ie. no working directory / bare repository) is
the analogue to a regular centralized VCS in Git.

29 / 39



Hands-on - Getting started with remote server

When the remote server is set up with an initialized Git directory
you can simply clone the repository:

Cloning a remote repository

$ git clone <repository>

You will then get a complete local copy of that repository, which
you can edit.

30 / 39



Hands-on - Getting started with remote server

With your local working copy you can make any changes to the
files in your working directory as you like. When satisfied with your
changes you add any modified or new files to the staging area
using add:

Adding files to the staging area

$ git add <filepattern>

31 / 39



Hands-on - Getting started with remote server

Finally to commit the files in the staging area you run commit
supplying a commit message.

Committing staging area to the repository

$ git commit -m <msg>

Note that so far everything is happening locally in your working
directory.

32 / 39



Hands-on - Getting started with remote server
To share your commits with the remote you invoke the push
command:

Pushing local commits to the remote

$ git push

To recieve changes that other people have pushed to the remote
server you can use the pull command:

Pulling remote commits to the local working directory

$ git pull

And thats it.

33 / 39



Hands-on - Summary

Summary of a minimal Git workflow:
I clone remote repository
I add you changes to the staging area
I commit those changes to the git directory
I push your changes to the remote repository

I pull remote changes to your local working directory

34 / 39



More advanced topics

Git is a powerful and flexible DVCS. Some very useful, but a bit
more advanced features include:

I Branching
I Merging
I Tagging
I Rebasing

35 / 39



References

Some good Git sources for information:
I Git Community Book - http://book.git-scm.com/
I Pro Git - http://progit.org/
I Git Reference - http://gitref.org/
I GitHub - http://github.com/
I Git from the bottom up - http:

//ftp.newartisans.com/pub/git.from.bottom.up.pdf
I Understanding Git Conceptually -

http://www.eecs.harvard.edu/˜cduan/technical/git/
I Git Immersion - http://gitimmersion.com/

36 / 39

http://book.git-scm.com/
http://progit.org/
http://gitref.org/
http://github.com/
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf
http://www.eecs.harvard.edu/~cduan/technical/git/
http://gitimmersion.com/


Applications

GUIs for Git:
I GitX (MacOS) - http://gitx.frim.nl/
I Giggle (Linux) - http://live.gnome.org/giggle

37 / 39

http://gitx.frim.nl/
http://live.gnome.org/giggle


What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files

YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files

YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files

NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files

NO! (large, no diffs possible,
conflicts)

I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files

YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files

NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc.

NO! (unless unavoidable)
My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



What should (not) be added to a repository?
Git tracks diff-files to keep its memory requirements small. Main
rule: mostly add source files that compile.

I .c, .cpp, .f files YES!
I .tex files YES!
I .aux, .out, .dvi. . . files NO!
I compiled files, object files NO! (large, no diffs possible,

conflicts)
I .pdf files YES/NO!
I large data files NO. . . sometimes maybe
I photos, movies etc. NO! (unless unavoidable)

My rule of thumb: Files in the repository are permanent, only the
best should make it in there (it’s not your trash can!) They should
compile (code/Latex), be (more or less) cleaned up, unless it’s
avoidable only source/text files.

38 / 39



Some of my git wisedom
Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).
I Easier to manage, commit messages easier to monitor.
I Small memory footprint and faster!
I It’s easy to link two repositories (e.g., code libraries) using git

submodules (look it up)!

How often should you commit?
I As often as you like (in case of doubt, more often)
I Makes it easier to monitor changes, track down bugs
I If you collaborate, better to avoid conflicts
I For me: feels like a (small) achievement, supports

clean/systematic working style (always look at diff before
committing)

. . . any others??

39 / 39



Some of my git wisedom
Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).
I Easier to manage, commit messages easier to monitor.
I Small memory footprint and faster!
I It’s easy to link two repositories (e.g., code libraries) using git

submodules (look it up)!
How often should you commit?

I As often as you like (in case of doubt, more often)
I Makes it easier to monitor changes, track down bugs
I If you collaborate, better to avoid conflicts
I For me: feels like a (small) achievement, supports

clean/systematic working style (always look at diff before
committing)

. . . any others??

39 / 39



Some of my git wisedom
Should I have a few large repositories or many small ones?

I I recommend many small ones (like I use for this class).
I Easier to manage, commit messages easier to monitor.
I Small memory footprint and faster!
I It’s easy to link two repositories (e.g., code libraries) using git

submodules (look it up)!
How often should you commit?

I As often as you like (in case of doubt, more often)
I Makes it easier to monitor changes, track down bugs
I If you collaborate, better to avoid conflicts
I For me: feels like a (small) achievement, supports

clean/systematic working style (always look at diff before
committing)

. . . any others??

39 / 39


	Organization issues
	Parallel machines and programming models
	Shared memory parallelism–OpenMP
	Git—repository systems

