
Advanced Topics in Numerical Analysis:
High Performance Computing

More Shared Memory Parallelism, Sequential Performance Demo,

Libraries

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

March 11, 2019

1 / 22

Outline

Organization issues

Shared memory parallelism–OpenMP

Sequential Performance

Libraries

2 / 22

Organization

Scheduling:
I Homework assignment #2 due tonight
I New assignment will be posted this week

Topics today:
I Wrapping up shared memory parallelism
I Revisit sequential performance (finish demo from lecture 3)
I Libraries BLAS, LAPACK, FFTW

3 / 22

Outline

Organization issues

Shared memory parallelism–OpenMP

Sequential Performance

Libraries

4 / 22

Shared memory programming model

I Program is a collection of
control threads, that are
created dynamically

I Each thread has private and
shared variables

I Threads can exchange data by
reading/writing shared variables

I Danger: more than 1 processor
core reads/writes to a memory
location: race condition

Only one process is running, which can fork into shared memory
threads.

5 / 22

#pragma omp for schedule
(static/dynamic/guided [,chunk])

I static divided into pieces of size chunk, and statically
assigned to threads.

I dynamic divided into pieces of size chunk and dynamically
scheduled as requested.

I guided size of chunk decreases over time.

∗
∗figure from

http://pages.tacc.utexas.edu/ eijkhout/pcse/html/omp-loop.html 6 / 22

Weak sequential consistency

int a = 0, b = 0;

Thread-1

a = 1;
b = 2;

Thread-2

if (b == 2)
assert (a == 1);

(may fail because b may be
commited before a)

7 / 22

Weak sequential consistency

int a = 0, b = 0;

Thread-1

a = 1;
pragma omp flush(a)
b = 2;

Thread-2

if (b == 2)
assert (a == 1);

8 / 22

Synchronization

Synchronization: needed to protect access to shared data
I Implicit barrier synchronization at end of parallel region

(noexplicit support for synch. subset of threads). Can invoke
explicitly with #pragma omp barrier. All threads must see
same sequence of work-sharing and barrier regions.

I critical sections: only one thread at a time in critical region
with the same name. #pragma omp critical [(name)]

I atomic operation: protects updates to individual memory loc.
Only simple expressions allowed. #pragma omp atomic

I also flush, locks, master operations

At all these (implicit or explicit) synchronization points OpenMP
ensures that threads have consistent values of shared data.

9 / 22

Cache Coherent Non-uniform Memory Access

I Cores: individual processing units.
I Sockets: collection of cores on the same silicon die.
I Each sockets connected to its own DRAM.
I Sockets interconnected using a network: QPI (Intel), HT

(AMD).
I Location of memory pages determined by first-touch policy.

†

†figure from: https://www.boost.org
10 / 22

Outline

Organization issues

Shared memory parallelism–OpenMP

Sequential Performance

Libraries

11 / 22

Sequential Performance

12 / 22

Sequential Performance

12 / 22

Sequential Performance
Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions
I Pipelining ”assembly line” parallelism
I Superscalar architecture multiple execution units
I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help?

Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)
I MMX 2-wide float
I SSE 4-wide float, 2-wide double
I AVX 8-wide float, 4-wide double
I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

13 / 22

Sequential Performance
Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions
I Pipelining ”assembly line” parallelism
I Superscalar architecture multiple execution units
I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)
I MMX 2-wide float
I SSE 4-wide float, 2-wide double
I AVX 8-wide float, 4-wide double
I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

13 / 22

Sequential Performance
Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions
I Pipelining ”assembly line” parallelism
I Superscalar architecture multiple execution units
I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)
I MMX 2-wide float
I SSE 4-wide float, 2-wide double
I AVX 8-wide float, 4-wide double
I New instructions FMA (fused multiply accumulate)

Many ways of doing this!

13 / 22

Sequential Performance
Instruction Level Parallelism (ILP)

I Out of order execution re-order instructions
I Pipelining ”assembly line” parallelism
I Superscalar architecture multiple execution units
I Branch prediction speculative execution

Compilers and processors already very good at this part!
How can we help? Keep data close to processor to avoid pipeline
stalls, loop unrolling to expose independent instructions, avoid
instruction dependencies, avoid conditional branches etc.

New Instruction Set Architectures (ISA)
I MMX 2-wide float
I SSE 4-wide float, 2-wide double
I AVX 8-wide float, 4-wide double
I New instructions FMA (fused multiply accumulate)

Many ways of doing this!
13 / 22

Vectorization

SIMD: Single Instruction Multiple Data

Steps
I Start thinking in vectors instead of scalars (float, double)
I Re-organize computations as vector operations
I Tell the compiler it is safe to use SIMD instructions

14 / 22

Implicit Vectorization

I Auto-Vectorisation: Loop unrolling, inlining, compiler flags
(-O3, -march=native) and hints

I Compiler specific extensions, not portable and no guarantee of
vecorizing

I #pragma ivdep (tell GCC to ignore vector dependency)
I builtin assume aligned(a, 32) (tell GCC array is aligned)
I assume aligned(a, 32) (tell Intel compiler array is aligned)
I -fopt-info-vec-optimized (vectorization report with GCC)
I -qopt-report=2 (vectorization report with Intel)

15 / 22

Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

16 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

16 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

16 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Explicit Vectorization

I OpenMP 4.0: SIMD pragma
I #pragma omp simd [clauses] (vectorize for loops)
I clause: safelen(len) (vectors of length len are safe)
I clause: aligned(v1,v2:alignment) (vectors are aligned)

I Assembly: too hard!

I Vector Intrinsics: details on next slide

I Vector Intrinsics (the C++ way)
I Vector objects, overloaded operatos (+, -, *, ||, && etc)
I See file ”intrin-wrapper.h” in

https://github.com/NYU-HPC19/lecture3
I Other implementations

https://www.agner.org/optimize/#vectorclass
I Similar proposals for future C++ standard library https:

//en.cppreference.com/w/cpp/experimental/simd

16 / 22

https://github.com/NYU-HPC19/lecture3
https://www.agner.org/optimize/#vectorclass
https://en.cppreference.com/w/cpp/experimental/simd
https://en.cppreference.com/w/cpp/experimental/simd

Vector Intrinsics
https://software.intel.com/sites/landingpage/
IntrinsicsGuide/

I Aligned memory allocation: reading from aligned arrays is
faster, un-aligned reads require multiple instructions. Allocate
arrays using,

I void* aligned malloc(int); (for dynamic memory)
I alignas(64) char double[128]; (for static arrays)

I Basic Vector Operations (AVX only)
I Vector type: m256d (vector of 4-doubles)
I Load aligned: mm256 load pd(double const *)
I Load unaligned: mm256 load pd(double const *)
I Store aligned: mm256 store pd(double const *, m265d)
I Store un-aligned: mm256 store pd(double const *, m265d)
I Vector Addition: mm256 add pd(m265d, m265d)
I Vector Multiplication: mm256 mul pd(m265d, m265d)
I Vector FMA: mm256 fmadd pd(m265d, m265d, m265d)
I Other intrinsics to know: permutation, comparison, bitwise

operations, streaming reads/writes, prefetch instructions etc.
17 / 22

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Special Functions

I Special functions like div, mod, exp,
√

x, sin, cos computed
in software or special hardware units.

I Require O(10) or O(100) cycles to compute.

I Example: division requires 10 cycles and has latency of 38
cycles.

I Specialized algorithms for some computations (fast inverse
sqrt used in Quake III)

18 / 22

Outline

Organization issues

Shared memory parallelism–OpenMP

Sequential Performance

Libraries

19 / 22

Basic Linear Algebra Subprograms (BLAS)

Specification for basic linear algebra operations
I Level 1: vector-vector operations (dot-product, norm, axpy)
I Level 2: matrix-vector operations (generalized matrix-vector

multiplication: gemv)
I Level 3: matrix-matrix operations (generalized matrix-matrix

multiplication: gemm)

Many implementations available
I Open-source: GotoBLAS (Kazushige Goto), OpenBLAS,

ATLAS (Automatically Tuned Linear Algebra Software)
I Intel Math Kernel Library (MKL)

20 / 22

GEMM (sgemm, dgemm)
Function declaration:

extern "C" { // from C++
void dgemm_ (char* TRANSA , char* TRANSB ,

int* M, int* N, int* K, double * ALPHA ,
double * A, int* LDA , double * B, int*
LDB , double * BETA , double * C, int* LDC);

}

Linking:

g++ MMult.cpp -lblas
icpc MMult.cpp -mkl

(for linking to MKL using non-Intel compilers:
https://software.intel.com/en-us/articles/intel-mkl-link-line-
advisor)

21 / 22

Other Useful Libraries

Linear Algebra Package (LAPACK)
I Linear solvers, LU factorization, QR factorization, singular

value decomposition (SVD)
I Built on top of BLAS
I Many implementations available (also included in MKL)

Fastest Fourier Transform in the West (FFTW)
http://www.fftw.org

I Optimized FFT implementation, open source.

22 / 22

	Organization issues
	Shared memory parallelism–OpenMP
	Sequential Performance
	Libraries

