
Advanced Topics in Numerical Analysis:
High Performance Computing

Intro to GPGPU

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

April 1, 2019

1 / 23



Outline

Organization issues

Computing on GPUs

Submitting jobs through a scheduler

2 / 23



Organization

Scheduling:
I Homework assignment #3 due tonight

Topics today:
I More GPGPU programming
I Job schedulers (SLURM)

3 / 23



Outline

Organization issues

Computing on GPUs

Submitting jobs through a scheduler

4 / 23



Review of Last Class

CPU
I fewer cores ∼ O(10)

I smaller vector lengths
(2-SSE, 4-AVX)

I large amounts of cache
(L1, L2, L3)

I hide latency by
extracting parallelism
from sequential code:
out-of-order execution,
branch-prediction

GPU
I several streaming

multiprocessors ∼ O(100)
I wider vector lengths

(warp size = 32)
I smaller cache (L1/programmer

managed buffer, L2 on more
recent GPUs)

I hide latency by executing
several threads in parallel
(pipelined) eg. 64-warps/SM
(hyper-threading)

5 / 23



Review of Last Class

Computing on GPU:
I Device (GPU) is slave to the host (CPU).
I Workflow for computing on GPU:

1. copy data from host to device,
2. launch GPU kernel to compute result on device,
3. copy result from device to host.

I Host - device interconnect (PCI Express or NVLink) is slow
(O(10-50) GB/s).

I Computing on GPUs useful only for compute-intensive tasks
(when overhead of data transfer is small compared to
compute time).

6 / 23



Review of Last Class

GPU Architecture: consists of,
I main memory (either DRAM or recently HBM with wider bus).
I PCI Express or NVLink interconnect to host (CPU) DRAM

and other GPUs.
I several Streaming Multiprocessors (SM)

I with shared L2 cache.
Each Streaming Multiprocessor,

I 32 scalar double-precision cores (each executing the same
instruction, Single Instruction Multiple Data).

I can execute up to 1024 scalar threads (or 32-warps)
simultaneously (pipelined, hyper-threading to hide instruction
latency).

I L1 cache / shared-memory: shared by all threads in the
thread-block.

7 / 23



Review of Last Class
GPU Threads

I parallelism ∼ O(105), orders of magnitude more than CPUs
I design philosophy on CPU vs GPU,

I On CPU: #-of-threads ∼ #-of-cores
I On GPU: #-of-threads ∼ O(N) (problem size)

I thread hierarchy
I threads partitioned into blocks
I blocks arranged into a grid

blockIdx.x 0 1 2
threadIdx.x 0 1 2 3 0 1 2 3 0 1 2 3
Ai A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

idx = threadIdx.x + blockDim.x * blockIdx.x

dim3 GridDim(3), BlockDim(4);
mykernel<<<GridDim, BlockDim>>>();

8 / 23



Review of Last Class
2D Grid:

0 1
0 1 2 0 1 2

0 A0,0 A0,1 A0,2 A0,3 A0,4 A0,5
0 1 A1,0 A1,1 A1,2 A1,3 A1,4 A1,5

2 A2,0 A2,1 A2,2 A2,3 A2,4 A2,5
0 A3,0 A3,1 A3,2 A3,3 A3,4 A3,5

1 1 A4,0 A4,1 A4,2 A4,3 A4,4 A4,5
2 A5,0 A5,1 A5,2 A5,3 A5,4 A5,5

Ai,j

i = threadIdx.x + blockDim.x * blockIdx.x
j = threadIdx.y + blockDim.y * blockIdx.y

dim3 GridDim(2,2), BlockDim(3,3);
mykernel<<<GridDim, BlockDim>>>();

9 / 23



Review of Last Class
Device Memory Spaces
I Register: double x;
I Local: double A[100];
I Shared: shared double B[100];
I Global:

cudaMalloc(&C, 100*sizeof(double));

Memory on/off chip Cached Access Scope Lifetime
Register On n/a R/W Thread Thread
Local Off Yes R/W Thread Thread
Shared On n/a R/W Block Block
Global Off Yes R/W Global Host
Constant Off Yes R Global Host
Texture Off Yes R Global Host

(table from CUDA best practices guide)
10 / 23

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#device-memory-spaces__salient-features-device-memory


Review of Last Class

Global Memory Management:
I Synchronous:

I Device allocation: cudaMalloc, cudaFree
I Host allocation: malloc, free
I Data transfer: cudaMemcpy

I Asynchronous:
I Device allocation: cudaMalloc, cudaFree
I Host allocation (page-locked): cudaMallocHost,

cudaFreeHost
I Asynchronous data transfer: cudaMemcpyAsync
I Wait for data transfer: cudaDeviceSynchronize

I Driver Managed:
I Host and Device allocation: cudaMallocManaged, cudaFree
I Wait kernel function: cudaDeviceSynchronize

11 / 23



Review of Last Class

I Best practices for accessing global memory
I minimize number of cache lines accessed.

I Best practices for conditional branches
I avoid divergence within warps

I Resource limits for different compute capabilities

I Demo: vector addition.
I embarrassingly parallel
I thread j independently computes one element:

C[j] = A[j] + B[j]

12 / 23

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities


Shared Memory

I Fast memory within each streaming multiprocessor
I almost as fast as registers.

I Configurable: as L1 cache or programmer managed buffer.
I cudaFuncSetCacheConfig(kernel fn, cacheConfig)

I Programmer view: shared between all threads in a
thread-block

I in device function: shared double A[128];
I each thread in a block has access, can be used to

communicate between threads.

I Bank conflicts:
I shared memory partitioned into 32 memory banks, with

consecutive (4-byte or 8-byte) data elements in different banks.
I concurrent accesses as long as threads within a warp access

different memory banks.

13 / 23

https://devblogs.nvidia.com/using-shared-memory-cuda-cc


Synchronization

I Need synchronization between threads to avoid data races
when using shared memory.

I required between any reads and writes of the same shared
array element from different threads (read-after-write or
write-after-read data races).

I syncthreads() synchronize all threads within a
thread-block.

I syncwarp() synchronize all threads within a warp
(32-threads).

14 / 23



Reduction

Parallel reduction algorithm:

I log2 N stages
I Requires coordination between threads!
I In each stage, every thread:

I reads two numbers,
I computes the sum and
I writes its result to memory

15 / 23



Reduction
GPU algorithm

I Compute local reduction within each thread block
I Multiple kernel invocations for global synchronization

Stage 1: kernel with 4 thread-blocks, 8 threads per thread-block

Stage 2: launch kernel with 1 thread-block with 4-threads

16 / 23



Reduction (within thread block)

17 / 23



Reduction (within thread block)

17 / 23



Reduction (within thread block)

syncthreads();

17 / 23



Reduction (within thread block)

syncthreads();

17 / 23



Reduction (within thread block)

syncthreads();

17 / 23



Reduction (within thread block)

17 / 23



Reduction (within thread block)

Problems: warp divergence, shared-memory bank conflicts
17 / 23



Reduction (within thread block)
Optimized scheme:

18 / 23



Reduction (within thread block)
Optimized scheme:

syncthreads();

18 / 23



Reduction (within thread block)
Optimized scheme:

syncwarp();

18 / 23



Reduction (within thread block)
Optimized scheme:

syncwarp();

18 / 23



Reduction (within thread block)
Optimized scheme:

18 / 23



Outline

Organization issues

Computing on GPUs

Submitting jobs through a scheduler

19 / 23



Submitting jobs through a scheduler (e.g., on Prince)
Overview of HPC cluster

20 / 23



Submitting jobs on Prince

Stampede user guide: https:
//wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince

Batch facilities: SGE, LSF, SLURM. Prince uses SLURM, and
these are some of the basic commands:

I submit/start a job: sbatch jobscript
I see status of my job: squeue -u USERNAME
I cancel my job: scancel JOBID
I see all jobs on machine: showq | less

21 / 23

https://wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince
https://wikis.nyu.edu/display/NYUHPC/Clusters+-+Prince


Submitting jobs on Prince

Some basic rules:
I Don’t run on the login node!
I Don’t abuse the shared file system.

22 / 23



Submitting jobs on Stampede
Example job script (in git repo for lecture5)

#!/bin/bash
#SBATCH --nodes=1 \# total number of mpi tasks
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --time=5:00:00
#SBATCH --mem=2GB
#SBATCH --job-name=myTest
#SBATCH --mail-type=END \# email me when the job finishes
#SBATCH --mail-user=first.last@nyu.edu
#SBATCH --output=slurm_%j.out

module purge
module load ...
./myexecutable

23 / 23


	Organization issues
	Computing on GPUs
	Submitting jobs through a scheduler

