
Advanced Topics in Numerical Analysis:
High Performance Computing

Intro to GPGPU

Georg Stadler, Dhairya Malhotra
Courant Institute, NYU

Spring 2019, Monday, 5:10–7:00PM, WWH #1302

April 8, 2019

1 / 20

Outline

Organization issues

Final projects

Computing on GPUs

2 / 20

Organization

Scheduling:
I Homework assignment #4 due next Monday

Topics today:
I Final project overview/discussion
I More GPGPU programming (several examples)
I Algorithms: image filtering (convolution), parallel scan,

bitonic sort

Outlook for next week(s):
I Distributed memory programming (MPI)

3 / 20

Outline

Organization issues

Final projects

Computing on GPUs

4 / 20

Final projects

I Final projects! Pitch/discuss your final project to/with us.
We’re available Tuesday (tomorrow) 5-6pm and Thursday
11-12:30 in WWH #1111 or over Slack.

I Would like to (more or less) finalize project groups and topics
in the next week.

I Final projects are in teams of 1-3 people (2 preferred!)
I We posted suggestions for final projects. More ideas on the

next slides. Also, take a look at the HPC projects we collected
from the first homework assignment.

I Final project presentations (max 10min each) in the week May
20/21. You are also required to hand in a short paper with
your results, as well as the git repo with the code.

5 / 20

Final projects

Final project examples (from example list):
I Parallel multigrid
I Image denoising
I Adaptive finite volumes
I Parallel k-means
I Fluid mechanics simulation
I Data partitioning using parallel octrees

6 / 20

Final projects

Final project examples (more examples):
I Parallelizing a DFT sub-calculation (Tkatchenko-Scheffler

dispersion energies and forces)
I Parallelizing a neural network color transfer method for images
I Parallel all-pairs shortest paths via Floyd-Warshall
I Fast CUDA kernels for ResNet inference
I . . . Take an existing serious code and speed it up/parallelize it
I . . .

7 / 20

Outline

Organization issues

Final projects

Computing on GPUs

8 / 20

Review of Last Class

I CUDA programming model: GPU architecture,
memory-hierarchy, thread-hierarchy.

I Shared memory: fast, low-latency, shared within
thread-block, 48KB - 128KB (depending on compute
capability)

I avoid bank conflicts within a warp.
I Synchronization

I syncthreads() all threads in a block
I syncwarp() all threads in a warp

I Reduction on GPUs

9 / 20

Hiding Latency
I All operations have latency
I CPUs hide latency using out-of-order computation and branch

prediction; reduce latency of memory accesses using caches.
I GPUs hide latency using parallelism:

I execute warp-1 (threads 0-31)
I when warp-1 stalls, start executing warp-2 (threads 32-63)

and so on · · ·

10 / 20

Occupancy Calculator
Get resource usage for kernel functions (compiler flag: -Xptxas -v)
Example:
nvcc -std=c++11 -Xcompiler "-fopenmp" -Xptxas -v reduction.cu

ptxas info : Compiling entry function
’ Z16reduction kernelPdPKdl’ for ’sm 30’
ptxas info : Function properties for Z16reduction kernelPdPKdl
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 28 registers, 8192 bytes smem, 344 bytes cmem[0]

Occupancy = #-of-threads per SM
max-#-of-threads per SM

I Calculate occupancy for your code:
I https://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls
I web version: https://xmartlabs.github.io/cuda-calculator
I Improve occupancy to improve performance

11 / 20

https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
https://xmartlabs.github.io/cuda-calculator

Device Management (Multiple GPUs)

I Get number of GPUs: cudaGetDeviceCount(int *count)

I Set the current GPU: cudaSetDevice(int device)

I Get current GPU: cudaGetDevice(int *device)

I Get GPU properties:
cudaGetDeviceProperties(cudaDeviceProp *prop, int
device)

12 / 20

Streams
I execute multiple tasks in parallel;

either on separate GPUs or on the
same GPU.

I useful for executing several
independent small tasks where
each task does not have sufficient
parallelism.

// create streams
cudaStream_t stream1 , stream2
cudaStreamCreate (& streams1);
cudaStreamCreate (& streams2);

// launch two kernels in parallel
kernel <<<1, 64, 0, streams1 >>>();
kernel <<<1, 128, 0, streams2 >>>();

// synchronize
cudaStreamSynchronize (stream1)
cudaStreamSynchronize (stream2)

13 / 20

Image Filtering
Convolution: read k × k block of the image multiply by filter
weights and sum.

figure from: GPU Computing: Image Convolution - Jan Novák,
Gábor Liktor, Carsten Dachsbacher

14 / 20

Image Filtering
Using shared memory as cache to minimize global memory reads

I read a 32× 32 block of original image from main memory
I compute convolution in shared memory
I write back result sub-block (excluding halo)

figure from: GPU Computing: Image Convolution - Jan Novák,
Gábor Liktor, Carsten Dachsbacher

15 / 20

Sorting
Comparison based sorting algorithms: bubble sort O(N2),
sample sort O(N log N), merge sort O(N log N)

Bitonic merge sort O(N log2 N)
I great for small to medium problem sizes.
I sorting networks, simple deterministic algorithm bases on

compare and swap.
I sequence of log N bitonic merge operations.

16 / 20

Sorting
Comparison based sorting algorithms: bubble sort O(N2),
sample sort O(N log N), merge sort O(N log N)

Bitonic merge sort O(N log2 N)
I great for small to medium problem sizes.
I sorting networks, simple deterministic algorithm bases on

compare and swap.
I sequence of log N bitonic merge operations.

16 / 20

Sorting
Comparison based sorting algorithms: bubble sort O(N2),
sample sort O(N log N), merge sort O(N log N)

Bitonic merge sort O(N log2 N)
I great for small to medium problem sizes.
I sorting networks, simple deterministic algorithm bases on

compare and swap.
I sequence of log N bitonic merge operations.

16 / 20

Sorting
Comparison based sorting algorithms: bubble sort O(N2),
sample sort O(N log N), merge sort O(N log N)

Bitonic merge sort O(N log2 N)
I great for small to medium problem sizes.
I sorting networks, simple deterministic algorithm bases on

compare and swap.
I sequence of log N bitonic merge operations.

16 / 20

Bitonic Sort
Bitonic merge O(N log N) cost for each merge operation

I divide-and-conquer algorithm on bitonic sequences.
I Bitonic sequence: a sequence that changes monotonicity

exactly once.

I if bitonic-sequence larger than block-size, then read and write
directly from global memory; otherwise read/write from
shared-memory

17 / 20

Parallel Scan (within thread-block)
Reduction tree Scan tree

-2 1 2 0 -2 0 1 -3 4 -4 -3 2 -5 4 -2 1

-1 2 -2 -2 0 -1 -1 -1

1 -4 -1 -2

-3 -3

-6

-6

-3 -6

1 -3 -4 -6

-1 1 -1 -3 -3 -4 -5 -6

-2 -1 1 1 -1 -1 0 -3 1 -3 -6 -4 -9 -5 -7 -6

Construct scan tree: right child: copy parent’s value.
left child: difference between parent’s value and sibling’s value in
reduction tree.

18 / 20

Libraries

Optimized libraries for

I cuBLAS for linear algebra

I cuFFT for Fast Fourier Transform

I cuDNN for Deep Neural Networks

cuBLAS Demo!

19 / 20

Summary

I Calculating Occupancy: higher is better
I useful for debugging performance bottlenecks

I Miscellaneous:
I managing multiple GPUs
I executing multiple streams in parallel

I Algorithms
I Image filtering
I Parallel scan
I Bitonic sort

I Libraries: cuBLAS, cuFFT, cuDNN

20 / 20

	Organization issues
	Final projects
	Computing on GPUs

